



## Investigation of the Effects of Water Ageing on the Fracture Toughness of Novel Composite Materials

**Christophe Floreani** Institute of Materials and Processes School of Engineering The University of Edinburgh





### **Project Aims**

- Manufacture high quality powder epoxy carbon and glass coupons
- Understand the **water absorption characteristics** of these materials
- Determine the mode I and Mixed Mode Fracture toughness of dry and saturated samples
- Investigate the effect of hygrothermal aging on fracture mechanics
- Use results as the input for delamination modelling in composites with high risk of delamination such as tidal turbine blades





### **Presentation Overview**

- I. Introduction
- II. Specimen Preparation
- III. Test Setup
- IV. Results and Findings
- V. Future Work
- VI. Conclusions





#### I. Introduction: Powder Epoxy

- Heat activated cure: Separate melting and cure
- Can be stored at room temperature
- Low viscosity (down to 1 Pa.s)
- Low exothermic reaction, allowing for faster production of thick composites
- Suitable for out-of-autoclave manufacturing
- No VOCs and no material waste
- Tailored for large composite structures such as turbine blades



#### **Differential Scanning Calorimetry**

Maguire, J.M., Nayak, K, and Ó Brádaigh, C.M., (2018) "Characterisation of Epoxy Powders for Processing Thick-Section Composite Structures", Materials and Design, Vol. 139, pp. 112-121





#### I. Why are we interested in Toughness?

- Work is carried out as part of a study on delamination of tidal turbine blades
- Rapid transition from a circular root to hydrofoil
- Thickness reduction from root to tip by dropping plies
- Risk of delamination in tidal blades is enhanced which may become saturated in water
- Delamination rate is governed by toughness



Fagan, E. M., Kennedy, C. R., Leen, S. B., & Goggins, J. (2016). Damage mechanics based design methodology for tidal current turbine composite blades. *Renewable Energy*, *97*, 358–372.





#### I. Introduction on Composite Toughness

- 3 modes of fracture: Normal and two Shear Directions
- Mode I test: Double Cantilever Beam (DCB)
- Mode II test: End Notch Flexure (ENF)
- In real applications cracks propagate in a mix of the shear and normal modes
- Therefore, Mixed Mode Bending (MMB) test can be carried out to obtain the properties in more realistic fracture cases





Wyoming Test Fixtures: MMB Mixed Mode





#### **II. Specimen Preparation**

- Plates manufactured using UD glass (with 10% 90° fibres) and carbon (with 3% ±60° fibres) fabrics around 600 GSM from Saertex
- Powder epoxy used as resin
- Fibre Volume Fraction of  $50\% \pm 2\%$
- Optical microscope observations demonstrate that no macro voids are present.
- 180mm X 24mm X 3.5mm coupons extracted from plates with 13µm thick Teflon insert
- 72 coupons (36 carbon and 36 glass) for MMB test
- 24 coupons for DCB (mode I) test







#### II. Saturated Samples

- Specimens were immersed in 60° C seawater for 4 months
- Mass intake stabilised after 3 months
- Saturation of water around 1.05% for the carbon and 0.98% for the glass composites
- Stainless steel loading blocks bonded with samples partially immersed to avoid desorption prior to testing









#### III. Test Setup: DCB

- Test performed according to ASTM D 5528
- Displacement rate of 2mm/min at loading point
- DCB samples tested on 3369
  Series Instron Universal Test
  Machine
- Imetrum video extensometer used to track crack growth







### III. Test Setup: MMB

- Test performed according to ASTM D6671
- Displacement rate of 2mm/min at loading point
- Mode ratios of 25%, 50% and 75% mode
  II were tested with 5 specimens at each ratio
- Load and displacement measured using Instron Test Machine
- Crack extension measured using a camera and graph paper glued on the bottom of specimens







#### IV. Results: DCB Test

- CFRP samples displayed stick slip behavior due to presence of off-axis fibres
- GFRP had smoother force-displacement curve
- The mode I toughness was measured as 1900±57 J/m<sup>2</sup> for CFRP and 2217±351 J/m<sup>2</sup> for GFRP
- Significantly higher toughness than found in literature for epoxy composites
   -> Lower risk of delamination
- Very good consistency between CFRP samples (COV of 3%) but high variability in GFRP Samples (COV 15.8%)









#### IV. MMB Results

- Saturated CFRP 30% drop in 25% mode II, a 10% drop for 50% but no significant reduction for the 75%
- Saturated GFRP had a similar drop in 25% mode II but an even higher drop as mode II was increased with a 45% reduction in 75% mode II toughness.
- The toughness for 25% mode II GF was lover than for the DCB -> This will be investigated.
- Curve fitting: Benzeggagh-Kenane criterion (BK)
- Influence of fibre configuration, interface properties or fibre stiffness?









#### IV. Summary of Results

|                 |     |                       | DCB   | 25% Mode II | 50% Mode II | 75% Mode II |
|-----------------|-----|-----------------------|-------|-------------|-------------|-------------|
| Carbon<br>Fibre | Dry | $G_c (J/m^2)$         | 1900  | 2477        | 2466        | 3347        |
|                 |     | Standard<br>Deviation | 57    | 146         | 212         | 540         |
|                 |     | COV (%)               | 3.00  | 5.89        | 8.60        | 16.13       |
|                 | Wet | $G_c (J/m^2)$         |       | 1736        | 2208        | 3340        |
|                 |     | Standard<br>Deviation |       | 223         | 171         | 203         |
|                 |     | COV (%)               |       | 12.85       | 7.74        | 6.08        |
|                 |     | Difference (%)        |       | 29.92       | 10.46       | 0.21        |
| Glass<br>Fibre  | Dry | $G_c (J/m^2)$         | 2217  | 1832        | 3256        | 5638        |
|                 |     | Standard<br>Deviation | 351   | 168         | 383         | 506         |
|                 |     | COV (%)               | 15.83 | 9.17        | 11.76       | 8.97        |
|                 | Wet | $G_c (J/m^2)$         |       | 1318        | 2079        | 3068        |
|                 |     | Standard<br>Deviation |       | 146         | 320         | 398         |
|                 |     | COV (%)               |       | 11.08       | 15.39       | 12.97       |
|                 |     | Difference (%)        |       | 28.06       | 36.15       | 45.58       |





#### V. Future Work: Explain Observed Differences

- ILSS to be conducted on wet/dry specimens
- Thorough Analysis of SEM pictures captured from fracture surfaces
- Refine the MMB Curves by performing DCB tests on wet coupons and ENF (100% mode II) tests





#### VI. Conclusions

- The water absorption kinetics at 60C was obtained and mass uptake was found to be in the low range for epoxy composites
- The **mixed mode fracture behavior** was characterized for glass and carbon composites
- The observed behavior were different for glass and carbon composites and was likely influenced by the off-axis fibres
- More tests need to be carried out to understand the observed behavior, especially at the microscale.





# Thank you for your attention!

Christophe Floreani Christophe.floreani@ed.ac.uk

