Syntactic Foam Buoyancy Materials for Subsea Service: Composition, Design, Applications, Testing and Challenges

Gregg Stewart – Technical Manager

Balmoral

COLLOQUIUM 607
MARINE AGING OF POLYMERS
28 August – 29 August 2019, Brest, France

Introduction – Balmoral Offshore Engineering

- Privately owned company
- Headquarters on 45-acre manufacture site in Aberdeen
- Supplying world-wide

Syntactic Foam Applications

Subsea Syntactic Foam Applications

www.balmoraloffshore.com

Syntactic Foam Design

- Considerations
 - National/International or client-specific specifications
 - Manufacturability
 - Required minimum service life
 - Operational depth/pressure
 - Seawater temperature during operation
 - Minimum safety factors
 - Minimum net buoyancy at EOL
 - EC
 - WA
 - Creep
 - Marine fouling
 - Mechanical Loads
 - COST vs Performance... £ \$ €

Syntactic Foam (Pure Syntactic) Composition

Syntactic Foam = Resin matrix + hollow microspheres (glass/polymer/ceramic & metallic)

Hollow Glass MicroSpheres (HGMS)

- Borosilicate glass spheres <150 μm diameter
- HGMS collapse pressures of 13.7 bar (200 psi) to 2275 bar (33,000 psi)
- Densities of 125 kg/m 3 to > 600 kg/m 3
- HGMS collapse resistance is increased in the resin matrix

Polymer resin system: The 'Matrix'

- Enhances collapse pressure of the HGMS. (Matrix amplification)
- MA of 1x to >20x are common.
- Thermosets and thermoplastic polymer systems are used.

<u>Combination of resin system + HGMS results in unique Tg, HCP & water absorption characteristics.</u>

Syntactic Foam Composition

Composite Syntactic Foam Composition

Composite Syntactic Foam = Syntactic foam (Pure Syntactic) + Macrospheres

Macrospheres

- Used to decrease overall density of foam
- Diameters 10 mm to 60 mm
- Injection moulded or pan coated
- Thermoplastic or Thermosetting
- Unique density and collapse (burst) pressure

<u>Combination of pure syntactic + macrospheres results in unique HCP, BL and mechanical performance.</u>

Properties of Syntactic Foam (Pure Syntactic)

Property	Low-Density HGMS	Medium-density HGMS	High-density HGMS
Finished Foam Density (kg/m³)	~560	~600	~700
Uniaxial Compressive Strength at Maximum Compressive Load (MPa)	>28	>40	>60
Tensile Strength at Maximum Tensile Load (MPa)	>15	>20	>30
Hydrostatic Collapse Pressure (bar)	>330	>550	>700
Punch Shear Strength (MPa)	>15	>20	>25

www.balmoraloffshore.com

Properties of Syn. Foam vs Composite Foam

Property	Syntactic Foam (Pure Syntactic) Medium- density HGMS	Composite Syntactic Foam (with macrospheres)
Finished Foam Density (kg/m³)	~600	~530
Uniaxial Compressive Strength at Maximum Compressive Load (MPa)	>40	>15
Tensile Strength at Maximum Tensile Load (MPa)	>20	<10
Punch Shear Strength (MPa)	>20	>30

Syntactic / Composite Syntactic Foam Testing

www.balmoraloffshore.co

Syntactic Foam Testing

Mechanical

- Different methods for foam vs composite
- National/International standards only suitable for syntactic foam so largescale in-house equipment required for composite syntactic foam
- AGED VS UNAGED
- Weathering Resistance
 - 'UV resistance'

Syntactic Foam Testing

Thermal

- DSC,
- DMA,
- Thermal conductivity

Hydrostatic

- Water Ingress
- Hydrostatic Collapse Pressure (HCP)
- Instrumented Buoyancy Loss (IBL)

Hydrostatic Collapse Pressure (HCP) Testing

Hydrostatic Collapse Pressure – Gives the 'short term' safety factor over operating pressure.

Syntactic Foam (Pure Syntactic) "Hydrostatic Pressure relating to a non-recoverable change in the Pressure vs Time chart (or on the Load vs Deflection chart) which is measurement dependant"

Composite Syntactic Foam (with spheres) –

"Hydrostatic pressure which results in an immediate
5% Buoyancy Loss"

Instrumented Buoyancy Loss (IBL) Testing

Allows an 'end of life' buoyancy loss prediction

Syntactic Foam Hydrostatic Testing

Future of Buoyancy Foam

Producing in deeper water & over longer service lives ≥ 30 years!

- Deeper waters = Longer, heavier pipelines
 - More buoyancy required
 - Buoyancy to withstand higher hydrostatic & mechanical loads
 - Increased drag from modules in sea currents can increase risk of fatigue in the line through <u>Vortex Induced Vibration</u> (VIV)
 - Lower density, higher performance buoyancy required to keep buoyancy module volume down and reduce drag

Future of Buoyancy Foam

Producing in deeper water & over longer service lives ≥ 30 years!

- Longer Service Durations
 - Continually seeking more advanced material/product solutions to ensure longevity
 - Ensure robust, reliable, long-term extrapolations methods of full-scale products
 - Balance: COST vs Performance... £ \$ €

Thank-You

Questions?

