

Water diffusion characterization in the bonded joint interphase by fiber optic sensor based on Fresnel reflection

EUROMECH - 29 August 2019

R.Grangeat M.Girard C.Lupi D.Leduc F.Jacquemin

GeM UMR CNRS 6183 - Institut de Recherche en Génie Civil et Mécanique

> Marine renewable energies

Kinetic energy (winds and currents) Potential energy (tidal amplitude) Mechanical energy (waves) Thermal potential (temperature gradients) Osmotic pressure (salinity gradients)

Used materials

Metallic materials Composite materials Polymer materials (bonded joint)

These structures are subject to a humid environment: need to study durability

→ Water diffusion parameters on a bulk polymer

➔ Constant water diffusion front

> What happens when the adhesive is in a confined state ? (in bonded assembly)

> What happens when the polymer is in a confined state ? (in bonded assembly)

Presence of interphases (Scientific lock): Two hypotheses

Presence of a preferential way that accelerates water diffusion (Zanni-Deffarges, 1995, Vine, 2001)

(<u>hypotheses</u>: adhesive/substrate interactions, microcavities, cracks, surface energy...)

Under-crosslinking

(Hong, 1992, De Parscau, 2016)

Table of content

- 1. Diffusion kinetics in a bulk adhesive
- 2. Diffusion kinetics in a bonded joint
- 3. Interphase characterization
 - a) Approach with gradient model
 - b) Instrumentation of a bonded assembly with Fresnel sensor
 - c) Optical characterization of the interphase during water diffusion
 - d) Local water characterization in the interphase
 - e) Water diffusion parameters of interphase
 - f) Macroscopic water uptake of bonded joint
- 4. Conclusion and perspectives

1. Diffusion kinetics in a bulk polymer

Gravimetric tests: immersion in water at 40 °C on discs (70 mm in diameter and 2 mm thickness)

Analytical solution of the Dual Fick 1D model: (Placette et al., 2011) (Crank, 1975)

$$C(t) = \sum_{i=1}^{2} \left[c_{s_i} \left(1 - \frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} exp \left[-D_i (2n+1)^2 \pi^2 \frac{t}{e^2} \right] \right) \right]$$

2. Diffusion kinetics in a bonded joint

Gravimetric tests on a bonded joint

<u>Geometry</u>: Parallelepiped samples (width 10 mm ; length 70mm ; thickness 1/2/5mm)

Geometry chosen in order to be able to measure a significant variation in the mass of the bonded joint during immersion

> What is the behavior of the adhesive in the case of a bonded assembly?

The presence of interphases accelerates water diffusion

9/26

UNIVERSITÉ DE NANTES

Different interphase ratios depending on the total thickness of the bonded joint

Calculation of the macroscopic water content of bonded joint

FRANCE

b) Instrumentation of a bonded assembly with Fresnel sensor

The Fresnel sensor (Cusano, 2000)

It is a fiber optic sensor that allows the local measurement of the refractive index of a material

b) Instrumentation of a bonded assembly with Fresnel sensor

Relationship between the refractive index and local water content

In the previous study (article in progress):

Implementation of an optical model (Maxwell-Garnet model (Markel, 2016)) to link the refractive index of the adhesive to the local water content

b) Instrumentation of a bonded assembly with Fresnel sensor

Objective: Measure local water content in the interphase of a bonded joint

15/26 UNIVERSITÉ DE NANT

c) Optical characterization of the interphase during water diffusion

- Different refractive index at the beginning of the immersion due to under-crosslinking of the interphase (Grangeat et al., 2019)
- Decrease in refractive index during water diffusion

16/26

UNIVERSITÉ DE NANTES

d) Local water characterization in the interphase

17/26

UNIVERSITÉ DE NANTES

d) Local water characterization in the interphase

Time of immersion [day]

Parameters	Bulk	$d = 2000 \ \mu \mathrm{m}$	$d = 125 \mu\mathrm{m}$	<i>d</i> = 62,5 μm	<i>1.22</i> = 40 μm
$D_1 ({ m mm^{2/s}})$	$(1,74 \pm 0,04).10^{-6}$	1,74.10-6	5,68.10-6	9,01.10 ⁻⁶	$(3,20\pm1,22).10^{-5}$
$D_2 (\mathrm{mm^2/s})$	$(9,01 \pm 1,10).10^{-9}$	9,01.10 ⁻⁹	9,27.10-8	1,15.10-8	$(4,05\pm0,30).10^{-7}$
$C_{s1} ({ m mm^{2}/s})$	$5,95 \pm 0,03$	5,95	6,95	7,80	$9{,}56\pm0{,}73$
$C_{s2} ({ m mm^{2}/s})$	$7,23 \pm 0,45$	7,23	5,61	7,31	$7,07 \pm 0,48$

RANCE

e) Water diffusion parameters of interphase

19/26

JNIVERSITÉ DE NANTES

<u>Results</u>: Crosslinking gradient (Grangeat et al., 2019),

The crosslinking rate was determined by measuring the refractive index using the Fresnel sensor in a bonded joint

- f) Macroscopic water uptake of bonded joint
- > Discretization in k layers of thickness δ_k
- > For each layer : $D_{1,} D_{2}$, C_{s1} , C_{s2} (average of the properties on the layer k)
- > Calculation of the water content $C_k(t)$ (Dual Fick 1D model) for each layer

f) Macroscopic water uptake of bonded joint

<u>Results</u>: Water diffusion parameters gradient

Gradient of water content in the interfacial zone

f) Macroscopic water uptake of bonded joint

<u>Results</u>: Comparison with gravimetric tests

24/26

UNIVERSITÉ DE NANTES

 Good correlation between the water content simulated using the gradient model and gravimetric tests

Conclusions

- Revealing of the interphase that accelerates water diffusion
- Characterization of the diffusive properties of the interphases (gradient model)
- Modeling of the water content field in bonded joint (gradient model)

Perspectives

 Implement a finite element calculation model under Abaqus[™]: Simulate the mechanical field induced by the hygroscopic swelling of the bonded joint confined by the substrates (in progress)

<u>First results</u>: Simulation of water diffusion in a 2 mm thick bonded assembly (2D modeling of a quarter of a specimen)

Thank you for your attention !

This work benefited from France Energies Marines and State financing managed by the National Research Agency under the Investments for the Future program bearing the reference ANR-10-IED-0006-08.

ANR-10-IED-0006-08

Bibliography

Aduriz, X. A., Lupi, C., Boyard, N., Bailleul, J., Leduc, D., & Sobotka, V. (2007). Quantitative control of RTM6 epoxy resin polymerisation by optical index determination. *Composites Science and Technology*, *67*, 3196-3201. <u>https://doi.org/10.1016/j.compscitech.2007.04.008</u>

Bruneaux, M. (2004). Durability of edhesively bonded structures : development of a predictive mechanical modelling taking into account physico-chemical characteristics of the adhesive Spécialité : Structures et Matériaux MODELISATION MECANIQUE ET PHYSICO-CHIMIQUE. Thèse de doctorat.

Crank, J. (1975). The Mathematics of Diffusion. https://doi.org/10.1016/0306-4549(77)90072-X

Cusano, A. (2000). Optoelectronic sensor for cure monitoring in thermoset-based composites. Sensors and Actuators, A: Physical, 84(3), 270-275.

De Parscau Du Plessix, B., Jacquemin, F., Lefébure, P., & Le Corre, S. (2016). Characterization and modeling of the polymerization-dependent moisture absorption behavior of an epoxy-carbon fiber-reinforced composite material. *Journal of Composite Materials*, 50(18), 2495-2505. <u>https://doi.org/10.1177/0021998315606510</u>

Grangeat, R., Girard, M., Lupi, C., Leduc, D., & Jacquemin, F. (2019). Revealing of interphases in bonded joints with a fiber optic sensor based on Fresnel reflection. International Journal of Adhesion and Adhesives, 91(February), 12-18.

Hong, S. G., Cave, N. G., & Boerio, F. J. (1992). The modification of epoxy/metal interphases by adsorbed contaminants. *The Journal of Adhesion*, 36(4), 265-279. https://doi.org/10.1080/00218469208026530

Markel, V. A. (2016). Introduction to the Maxwell Garnett approximation: tutorial. *Journal of the Optical Society of America A*, 33(7), 1244. <u>https://doi.org/10.1364/JOSAA.33.001244</u>

Obeid, H. (2016). Durabilité de composites à matrice thermoplastique sous chargement hygro-mécanique : étude multi-physique et multi-échelle des relations microstructure - propriétés - états mécaniques.

Placette, M. D., Fan, X., & Edwards, D. (2011). A dual stage model of anomalous moisture diffusion and desorption in epoxy mold compounds. 2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, 1/8-8/8. <u>https://doi.org/10.1109/ESIME.2011.5765824</u>

Vine, K., Cawley, P., & Kinloch, A. J. (2001). The Correlation of Non-Destructive Measurements and Toughness Changes in Adhesive Joints during Environmental Attack The Correlation of Non-Destructive Measurements and Toughness Changes in Adhesive Joints During Environmental Attack. *Journal of Adhesion*, 77(October), 125-161. https://doi.org/10.1080/00218460108030735

Zanni-Deffarges, M. P., & Shanahan, M. E. R. (1995). Diffusion of water into an epoxy adhesive:comparison between bulk behavior and adhesive joints. Int. J. Adhesion and Adhesives, 15(3), 137-142.

