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Context
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 Marine renewable energies

Kinetic energy (winds and currents)

Potential energy (tidal amplitude)

Mechanical energy (waves)

Thermal potential (temperature gradients)

Osmotic pressure (salinity gradients)

 Used materials

Metallic materials

Composite materials

Polymer materials (bonded joint)

 These structures are subject to a humid environment: need to study 

durability 



Context

D et Cs

 Water diffusion parameters on a bulk polymer

T=23°C RH=80%

Polyamide (Obeid, 2006)
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Water absorption can be characterized by 

gravimetric tests (mass monitoring)

 Mathematical models

Fick model

D, Cs

Dual Fick model

D1, Cs1, D2, Cs2

Langmuir model

D, Cs, α, ß

 Polymer are hydrophilic



Context

Epoxy adhesive

 Constant water diffusion front

Local water field

 What happens when the adhesive is in a confined state ? (in bonded assembly)

Example for Fick model:

D : diffusion coefficient(mm².s-1)

Cs : Saturation water content (%)

Calculation of the 

local water content

 Water diffusion front in a bulk adhesive
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Context

 Presence of interphases (Scientific lock)

Substrates (Stainless steel)

Epoxy adhesive

Interphases Local water field

(Bruneaux, 2004) Non constant water diffusion front

« Interface » ≠ « Interphase »
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 What happens when the polymer is in a confined state ? (in bonded assembly)



Context
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 Presence of interphases (Scientific lock): Two hypotheses 

Under-crosslinkingCapillary effect 

Presence of a preferential way that accelerates 

water diffusion 

(Zanni-Deffarges, 1995, Vine,2001)

(hypotheses: adhesive/substrate interactions, 

microcavities, cracks, surface energy…)

(Hong, 1992, De Parscau, 2016)
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 Gravimetric tests: immersion in water at 40 °C on discs (70 mm in diameter and 

2 mm thickness) 

Analytical solution of the Dual Fick 1D model: (Placette et al., 2011) (Crank, 1975)

1. Diffusion kinetics in a bulk polymer

Dual Fick 1D modeling, parameters 

identification:

D1 [mm².s-1] (1.74 ± 0.04).10-6

Cs1 [%] 5.95 ± 0.03

D2 [mm².s-1] (9.01 ± 1.10).10-9

Cs2 [%] 7.23 ± 0.45
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 Gravimetric tests on a bonded joint

Geometry: Parallelepiped samples (width 10 mm ; length 70mm ; thickness 1/2/5mm)

 Geometry chosen in order to be able to measure a significant variation in the mass of the 

bonded joint during immersion

2. Diffusion kinetics in a bonded joint

Direction of main diffusion
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 What is the behavior of the adhesive in the case of a bonded assembly?



 Gravimetric tests on a bonded joint

Results:

2. Diffusion kinetics in a bonded joint

Thickness 1 mm

 The presence of interphases accelerates water diffusion

 Different interphase ratios depending on the total thickness of the bonded joint
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Thickness 2 mm

Thickness 5 mm



a) Approach with gradient model

3. Characterization of interphases

Instrumentation of a bonded 

assembly with Fresnel sensor

Calculation of the macroscopic water content of bonded joint
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Optical characterization of the 

interphase during water 

diffusion

Local water characterization 

of the interphase

Water diffusion parameters of 

interphase



b) Instrumentation of a bonded assembly with Fresnel sensor

3. Characterization of interphases
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The Fresnel sensor (Cusano, 2000)

It is a fiber optic sensor that allows the local measurement of the refractive index of a material

Optical fiber: Protection tube

Cladding (Ø = 80 or 125 µm)

Core (Ø = 8 µm)

Measurement of the reflected 

power

Calculation of the refractive 

index of the adhesive

Fresnel sensor: Cleavage of an optical fiber



b) Instrumentation of a bonded assembly with Fresnel sensor

3. Characterization of interphases
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Refractive index

It’s a dimensionless number that describes how light propagates through that environment

 n = f (materials, wavelength, temperature, pressure, crosslinking rate, local water content)

In this study during immersion: (Cusano, 2000, Aduriz, 2007, Grangeat, 2019)

 n = f (materials, wavelength, temperature, pressure, crosslinking rate, local water content)

Unchanging Unchanging 1550 nm Negligible

Unchanging Unchanging

(Cusano, 2000, Aduriz, 2007, Grangeat, 2019)



Relationship between the refractive index and local water content

b) Instrumentation of a bonded assembly with Fresnel sensor

3. Characterization of interphases
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In the previous study (article in progress):

 Implementation of an optical model (Maxwell-Garnet model (Markel, 2016)) to link 

the refractive index of the adhesive to the local water content



b) Instrumentation of a bonded assembly with Fresnel sensor

3. Characterization of interphases
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Objective: Measure local water content in the interphase of a bonded joint 

Insertion geometry



b) Instrumentation of a bonded assembly with Fresnel sensor

3. Characterization of interphases
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Objective: Measure local water content in the interphase of a bonded joint 

Substrates (Stainless steel)

Epoxy adhesive

40 µm

125 µm
2000 µm

Measurement of local water 

content with Fresnel sensor 

Water diffusion parameters:

D : diffusion coefficient(mm².s-1)

Csat : Saturation water content (%)

Insertion geometry

 Water diffusion parameters depending on the distance from the substrate?



c) Optical characterization of the interphase during water diffusion

Results:

3. Characterization of interphases
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 Different refractive index at the beginning of the immersion due to under-crosslinking of the 

interphase (Grangeat et al., 2019)

 Decrease in refractive index during water diffusion



d) Local water characterization in the interphase

3. Characterization of interphases
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Maxwell-Garnett model:

𝑐 𝑧, 𝑡 =
𝑉𝑎 . 𝜌𝑤
𝑚𝑡0
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Water volume fraction Water refractive index 

Adhesive refractive index 

before immersion 

Adhesive refractive index 

during immersion 



d) Local water characterization in the interphase

Results:

3. Characterization of interphases
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Measure at 40 µm

Measure at 62,5 µm

Measure at 2000 µm

Measure at 125 µm

Dual-Fick local model



e) Water diffusion parameters of interphase

Results: Crosslinking gradient (Grangeat et al., 2019),

 The crosslinking rate was determined by measuring the refractive index using 

the Fresnel sensor in a bonded joint

3. Characterization of interphases
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e) Water diffusion parameters of interphase

3. Characterization of interphases
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 Linear relation between diffusion parameters and 

crosslinking rate (De Parscau du Plessix et al., 2016)



e) Water diffusion parameters of interphase

3. Characterization of interphases
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 Characterization of the diffusive properties of the 

interphase



3. Characterization of interphases
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f) Macroscopic water uptake of bonded joint 

 Discretization in k layers of thickness δk

 For each layer : D1, D2, Cs1, Cs2 (average of the properties on the layer k)

 Calculation of the water content Ck(t) (Dual Fick 1D model) for each layer 
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3. Characterization of interphases

23/26

f) Macroscopic water uptake of bonded joint 

Results: Water diffusion parameters gradient

 Gradient of water content in the interfacial zone



3. Characterization of interphases
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f) Macroscopic water uptake of bonded joint 

Results: Comparison with gravimetric tests

 Good correlation between the water content simulated using the gradient model and 

gravimetric tests



4. Conclusion and perspectives
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Conclusions

 Revealing of the interphase that accelerates water diffusion

 Characterization of the diffusive properties of the interphases (gradient model)

 Modeling of the water content field in bonded joint (gradient model)



4. Conclusion and perspectives
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Perspectives

 Implement a finite element calculation model under AbaqusTM: Simulate the

mechanical field induced by the hygroscopic swelling of the bonded joint confined by

the substrates (in progress)

First results: Simulation of water diffusion in a 2 mm thick bonded assembly (2D

modeling of a quarter of a specimen)
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