

INTERVENTION ON MOMAR OBSERVATORY Gilbert DAMY

WORKSHOP ON SEA OPERATIONS FOR OCEAN OBSERVATORIES TOULON JULY 25-27, 2019

<u>This presentation reports a collaborative work :</u>

<u>thanks to Patrick Simeoni, Christophe Duchi, Marc Nokin, Loic</u> <u>Dussud, Pascale Lherminier ...</u>

MoMAR : a multidisciplinary acoustically linked observing system with satellite connection to shore.

2 "SeaMoN" stations, serviced every year : a recovery and a re-installation procedure

Recovery phase

- time-consuming operation
- a deadweight is left on the seafloor

Operation with 2 cables ?

30/09/2019

Issues to be addressed

• the risk of contact between the 2 cables, (or between the ROV tether and the ascending station)

• the dynamic behaviour of the handling cable with the station attached to its lower end

Ship data

emer

	Atalante	Pourquoi-Pas
Length	85 m	107 m
DX	19 m	29 m
DY	13 m	18 m

Can we optimize the ship control stategy ? Which information on current profiles is available ?

ADCP data

ADCP data

Current velocity and direction, averaged on the first 6 layers (≈ 100 m height) : 54 m to 510 m

ADCP data

Current velocity and direction, averaged on the last 6 layers (≈ 100 m height) : 510 m to 990 m

Cable models

Useful for

- feasibity studies
- real-time support to operations predicting the response to a ship displacement for example.

Uncertainties

- Current profile
- Drag coefficient (Vortex Induced Vibrations) $Cd \in [1.2 \ 2.3]$

- Ship position and attitude (heading)
- Cable paid-out length
- Acoustic beacon position (USBL) one beacon at bottom end second beacon 750m above bottom end.
- ADCP data

Dive 1/ July 18th 2017 station 1 (12')

Cable length 750 m, Cd =1.5 x ship position, o cable end calculated position, + cable end USBL position

Dive 1/ July 18th 2017 station 3 (5')

Cable length 750 m, Cd =1.5

x ship position, o cable end calculated position,

+ cable end USBL position

Dive 1/ July 18th 2017 station 2 (40')

Cable length 1500 m, Cd =1.5 x ship position, o cable end calculated position, + cable end USBL position lfremer

Dive 1 displacement

Cable length 1500 m, Cd =2.3

blue ship position,
red cable end calculated position,
green cable end USBL position

lfremer

30/09/2019

Risk of contact : available cables

	unit	VICTOR	hydro_AT	dredging_AT	dredging PP
diameter	mm	20.5	9	19.5	21.52
mass/u.length	kg/m	1.451	0.54	1.688	2.004
weight in water/u.length	N/m	10.889	4.605	14.411	17.099
Cfd/pl		1.74	1.80	1.25	1.16
critical angle (1 knot)	°/vert	6.51	6.74	4.7	4.37

FDn normal component of the drag force per u. of length : FDn = Cfd Vc² cos² ϕ where Cfd = 1/2 $\rho_{seawater}$ Cd Dia Pn normal component of the in-water weight per u. of length : Pn = pl sin ϕ .

φc is solution of equation FDn-Pn = 0; Two cables with the ratio Cfd/pl will have the same critical angle

Calculation of cable deflection : Blue : ROV tether Other colours : Pourquoi-pas maneuvering cable ROV on stbd beam

Deadweight Victor 1.2 t Deadweight Dredging cable 0.5

Calculation of cable deflection : Blue : ROV tether Other colours : Pourquoi-pas maneuvering cable ROV on rear A-Frame

Deadweight Victor 1.2 t Deadweight Dredging cable 0.5 t

ffremer

Concluding remarks

- ADCP data are of little help due to their limited range
- cable models are relevant to predict response to ship maneuvers
- operation with 2 cables should not be performed on the Atalante due to unsufficient distance between A-frames and inadequacy of second winch/cable
- operation with 2 cables could be exceptionnaly performed on the Pourquoi-Pas, if metocean conditions are mild, only on a temporary basis : an active deadweight system is to be developed.
- USBL positioning may hopefully give an estimate of the global effect of the current on the cables to help manage the operation

Thank you for your attention.

Discussion ?