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Setting the stage

Ecologists  want  to  understand  and  model  temporal  community 
structures through the analysis of species assemblages.

•  Species  assemblages  are  the  best  response  variable  available  to 
estimate the impact of [anthropogenic] changes in ecosystems.


•  Difficulty:  species  assemblages  form  multivariate  data  tables 
(sites x species).
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Temporal structures in communities indicate that some process has 
been  at  work  to  create  them.  Two  families  of  mechanisms  can 
generate temporal structures in communities:

•   Induced  time  dependence:  forcing  (explanatory)  variables  are 
responsible  for  the  temporal  structures  found  in  the  species 
assemblage.  They  represent  environmental  or  biotic  control  of  the 
assemblages. Generally broad-scaled.

• Community dynamics: the temporal structures are generated by the 
species  assemblage  themselves,  creating  autocorrelation1  in  the 
response variables (species). Mechanisms: neutral processes such as 
reproductive  dynamics,  interactions  among  species,  and  random 
events. Temporal structures are generally fine-scaled. 


1 Temporal  autocorrelation  (SA)  is  technically  defined as  the  dependence,  due  to  temporal 
proximity, present in the residuals of a [regression-type] model of a response variable y that 
takes into account all deterministic effects due to forcing variables. Model: yi = f(Xi) + SAi + εi .




Multivariate variation partitioning

Borcard & Legendre 1992 [1367 citations] 


Borcard & Legendre 1994


and many published application papers




Figure – Venn diagram illustrating a partition of the variation of a 
response  matrix  Y  (e.g.,  community  composition  data)  between 
environmental  (matrix  X)  and  spatial  (matrix  W)  explanatory 
variables. The rectangle represents 100% of the variation of Y.
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Method described in:

Borcard, Legendre & Drapeau 1992, Borcard & Legendre 1994; Legendre & Legendre 2012.




How  to  combine  environmental  and  spatial  variables  in  modeling 
community composition data?


• A single response variable: partial multiple regression. 


Response
variable Explanatory table Explanatory table

X
Environmental

variables

W
Spatial

base functions
y [a] [b] [c]

[d] = Residuals

Environmental data
matrix X

Spatial data
matrix W

Partial multiple regression is computed as follows:

1. Compute the residuals Xres of the regression of X on W: Xres = X – [W [W'W]–1 W' X]

2. Regress y on Xres




How to  combine  environmental  and  spatial  variables  in  modelling 
community composition data?


• Multivariate data: partial canonical analysis (RDA or CCA). 


Response table Explanatory table Explanatory table

X

Environmental
variables

W

Spatial
base functions

Y

Community
composition

data

[a] [b] [c]

[d] = Residuals

Environmental data
matrix X

Spatial data
matrix W

Partial canonical analysis is computed as follows:

1. Compute the residuals Xres of the regression of X on W: Xres = X – [W [W'W]–1 W' X]

2. Regress Y on Xres to obtain Yfit . Compute PCA of Yfit .




Geographic base functions


First  (simple)  representation:  Polynomial  function  of  geographic 
coordinates (polynomial trend-surface analysis).


Example 1: 20 sampling sites in the Thau lagoon, southern France. 


z = f(X,Y) = b0 + b1X + b2Y + b3X2 + b4XY + b5Y2 + b6X3 + b7X2Y + b8XY2 + b9Y3^



Small textbook example:


20 sampling sites in the Thau lagoon, southern France.


Response (Y): 2 types of aquatic heterotrophic bacteria (log-transf.)


Environmental (X): NH4, phaeopigments, bacterial production


Spatial (W): selected geographic monomials X2, X3, X2Y, XY2, Y3


In real-life studies, partitioning is carried out on larger data sets.




Fractions Proportion of Probability Adjusted

of variation variation of Y (R2) (999 perm.) R2

[a+b] 0.450 0.005* 0.347

[b+c] 0.734 0.001* 0.639

[a+b+c] 0.784 0.001* 0.627

[a] 0.051 0.549!! –0.012

[b] 0.399 Cannot be tested 0.359

[c] 0.334 0.011* 0.280

Residuals = [d] 0.216 0.373

[a+b+c+d] 1.000 1.000

[b]
0.359

[a]
–0.012

[c]
0.280

[d]=0.373

Environmental
matrix X

Spatial
matrix W





Temporal eigenfunctions


Second representation:


Distance-based Moran’s eigenvector maps (dbMEM)

alias Principal Coordinates of Neighbor Matrices (PCNM)


leading to multiscale analysis in variation partitioning


Borcard & Legendre 2002, 2004


Dray, Legendre & Peres-Neto 2006




Figure – Eight of the 67 orthogonal PCNM eigenfunctions obtained for 100 equally-
spaced points along a transect or time series. Truncation at first-neighbour distance.
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Figure – Schematic description of dbMEM analysis. The descriptors of spatial or 
temporal relationships (dbMEM eigenfunctions) are obtained by principal coordinate 
analysis of a truncated matrix of Euclidean distances among the sampling units.




dbMEM eigenfunctions display autocorrelation


An autocorrelation coefficient (Moran’s I) can be computed for each 
dbMEM.  They  indicate  the  sign  of  the  autocorrelation  (+  or  –) 
modelled by the dbMEMs. Ex.100-point transect, 67 dbMEMs shown:


°




How to find the truncation distance in 2-dimensional spatial problems?




Spatial data: compute a minimum spanning tree


• Truncation distance ≥ length of the longest edge. Longest edge here: 

D(7, 8) = 3.0414


• Irregular time series: truncation distance ≥ length of longest edge.




Technical notes on dbMEM eigenfunctions


dbMEM variables represent a spectral decomposition of the spatial/
temporal relationships among the study sites. They can be computed 
for regular or irregular sets of points in space or time.


dbMEM  eigenfunctions  are  orthogonal.  If  the  sampling  design  is 
regular,  they look like  sine  waves;  this  is  a  property  of  the  eigen-
decomposition of the centred form of a distance matrix. If the design is 
irregular, the sine waves are distorted. 




Simulation study 


Type I error study 

Simulations showed that the procedure is honest. It does not generate 
more significant results that it should for a given significance level α.

Power study

Simulations  showed  that  dbMEM  analysis  is  capable  of  detecting 
spatial structures of many kinds: 

• random autocorrelated data,

•  bumps and  sine  waves  of  various  sizes,  without  or  with  random 
noise, representing deterministic structures, 

as long as the structures are larger than the truncation value used to 
create the dbMEM eigenfunctions.

Detailed results are found in Borcard & Legendre 2002.




A difficult test case
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A difficult test case
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A difficult test case
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A difficult test case
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Selection of explanatory variables?

Significance of the adjustment of a dbMEM model can be tested using 
the full set of dbMEM variables modelling positive spatial/temporal 
correlation, without selection of any kind. 


The adjusted R2 gives a correct estimate of the variation explained by 
the dbMEMs by correcting for the number of sampling units (n) and 
the number of explanatory variables in the model.1


Before constructing submodels, forward selection of dbMEMs can be 
carried  out  by  combining  two  criteria  during  model  selection:  the 
alpha significance level and the adjusted R2 of the model containing all 
dbMEM eigenfunctions.2


1 Peres-Neto, P. R., P. Legendre, S. Dray and D. Borcard. 2006. Variation partitioning of species data 
matrices: estimation and comparison of fractions. Ecology 87: 2614-2625.

2  Blanchet  F.  G.,  P.  Legendre  and  D.  Borcard.  2008.  Forward  selection  of  explanatory  variables. 
Ecology 89: 2623-2632.




Example 1

Regular one-dimensional transect in upper Amazonia1


Data: abundance of the fern Adiantum tomentosum in quadrats.

Sampling design: 260 adjacent, square (5 m x 5 m) subplots forming a 
transect in the region of Nauta, Peru.

Questions 

• At what spatial scales is the abundance of this species structured?

• Are these scales related to those of the environmental variables?

Pre-treatment

• The abundances were square-root transformed

• and detrended (significant linear trend: R2 = 0.102, p = 0.001)


1 Data from Tuomisto & Poulsen 2000, reanalysed in Borcard, Legendre, Avois-Jacquet & 
Tuomisto 2004.
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Data

PCNM model (50 significant PCNMs out of 176)

Broad-scale submodel, 8 PCNMs, R2 = 0.239

Forward selection


50 PCNM eigenfunctions 
were selected out of 176 
(permutation test, 999 
permutations).


The PCNMs were arbitrarily 
divided into 4 submodels. 
The submodels are 
orthogonal to one another.


Significant wavelengths 
(periodogram analysis):


V-br-scale: 250, 355-440 m

Broad-scale: 180 m

Medium-scale: 90 m

Fine-scale: 50, 65 m




Interpretation: regression on the environmental variables


tomentosum Very broad Broad Medium Fine
Adiantum

R
2 of PCNM submodel on A. tomentosum

R
2 of envir. on submodel

R
2 of envir. on A. tomentosum

Elevation (m)

Thickness of soil organic horizon (cm)

Waterlogging

Canopy height (m)

Canopy coverage (%)
Shrub coverage (%)

Herb coverage (%)

Trees 3 - 7.5 cm DBH

Lianas 3 - 7.5 cm diameter

Lianas 8 - 15 cm diameter

0.333 0.239 0.126 0.117

0.347 0.334 0.157

0.436

< 0.0001

0.0004

0.0393

0.0011

0.0621

0.0083

0.116 0.080 0.020

< 0.0001 < 0.0001
< 0.0001

0.0007
< 0.0001

0.0024
0.0341 0.0001

0.0002

0.0009

0.0413

0.0183



Use PCNM in variation partitioning: Adiantum tomentosum at Nauta, 
Peru (R2

a).




Example 2

Temporal structure in a multivariate sediment core1


• Data: the Round Loch of Glenhead (RLGH) fossil data. 

• 139 Holocene diatom taxa in 101 levels of a sediment core from a 
small lake in Galloway, S-W Scotland. 

• The data series covers the past 10 000 years.

• Level no. 1 is the top (most recent), no. 101 is the oldest.


1 Legendre, P. and H. J. B. Birks. 2012. From classical to canonical ordination. Chapter 8 in: 
Tracking  Environmental  Change  using  Lake  Sediments,  Volume  5:  Data  handling  and 
numerical techniques. Birks, Lotter, Juggins and Smol [eds.]. Springer, The Netherlands.




Analysis of RLGH data

Linear trend in the multivariate data: R2 = 0.190

Temporal  model  of  detrended data:  50  dbMEM variables;  30  were 
selected for modelling.

• Broad-scale submodel (dbMEM #1-10): 


R2 = 0.530, 3 significant axes

• Medium-scale submodel (dbMEM #11-20): 


R2 = 0.182, 1 significant axis

• Fine-scale submodel (10 dbMEM from #28-45): 


R2 = 0.079, model not significant


=> The diatom species that were positively or negatively correlated 
with each canonical axis are identified in the publication.




(a) Canonical axis 1 of submodel 1: 24.9% of detrended diatom variance (P = 0.001, 999 perm.)
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(c) Canonical axis 3 of submodel 1: 6.1% of detrended diatom variance (P = 0.001, 999 perm.)



How to use dbMEM eigenfunctions?

a) We proceeded as follows in the first example:

• dbMEM analysis of the response table Y;

• Division of the significant eigenfunctions into submodels;

• Interpretation of the submodels using explanatory variables.

The objective was to divide the variation of Y  into submodels and 
relate those to explanatory environmental variables.


b) dbMEM eigenfunctions can also be used in the framework of 
variation partitioning. The variation of Y is then partitioned with 
respect to a table of explanatory variables X and (for example) several 
tables W1, W2, W3, containing dbMEM submodels.




How to use dbMEM eigenfunctions?

c) dbMEMs can efficiently model spatial/temporal structures in data. 
They can be used to control for autocorrelation in tests of significance 
of the species-environment relationship (fraction [a]).


Peres-Neto, P. R. and P. Legendre. 2010. Estimating and controlling for spatial structure in the 
study of ecological communities. Global Ecology and Biogeography 19: 174-184.




The Moran’s eigenvector maps (MEM) method is a 
generalization  of  dbMEMs  to  different  types  of 
spatial  weights.  The  result  is  a  set  of  spatial 
eigenfunctions, as in dbMEM analysis.  

Stéphane Dray: generalized MEM analysis


1  Dray,  S.,  P.  Legendre,  and P.  R.  Peres-Neto.  2006.  Spatial  modelling:  a  comprehensive 
framework  for  principal  coordinate  analysis  of  neighbour  matrices  (PCNM).  Ecological 
Modelling 196: 483-493.


Eigen-decomposition  
of a spatial/temporal weighting matrix (SWM) 
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• In classical PCNM, a point is at distance 0 of itself (diagonal values), 
meaning that it is connected to itself. 

• In MEM, a point is not connected to itself, as in spatial/temporal 
correlation analysis. The eigenvalues are proportional to Moran’s I 
(the proportionality factor is the sum of the eigenvalues).




Other forms of Moran’s Eigenvector Maps (MEM) can 
be created besides dbMEM (Dray et al. 2006): 
• Binary MEMs: double-centre matrix A, then compute its 
eigenvalues and eigenvectors. 

• Replace matrix D by some function of the distances. 

• Replace D by some other weights, e.g. resistance of the landscape in 
landscape ecology. 

D =

0/1

connectivity

matrix among

sampling units

Weights

applied to

link edges
°

Hadamard

product



Asymmetric eigenvector maps (AEM) is a spatial 
eigenfunction method developed to model 
multivariate (e.g. species) spatial distributions 
generated by an asymmetric, directional physical 
process.1


AEM can also be applied to time series.  

Guillaume Blanchet: AEM analysis


1 Blanchet, F.G., P. Legendre and D. Borcard. 2008. Modelling directional spatial processes 
in ecological data. Ecological Modelling 215: 325-336. 
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For 8 nodes, 7 AEM eigenfunctions 
are produced.  
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eigenvector, from white (largest negative value) 
to black (largest positive value). Signs are 
arbitrary; they may be reverted with no 
consequence for the analysis. 



Three applications of AEM analysis to spatial data – 

Blanchet, F. G., P. Legendre, R. Maranger, D. Monti, and P. Pepin. 
2011. Modeling the effect of directional spatial ecological processes at 
different scales. Oecologia 166: 357-368.  



AEM analysis for a time series

Example: 10 sampling units along time, equal spacing –


Nodes-by-edges matrix E: 


Nine AEM eigenfunctions are produced by PCA of matrix E –

• 4 AEM model positive temporal correlation 

• 5 AEM model negative temporal correlation




Time series represent a form of directional stochastic process. 


• To emphasize the directional nature of the process influencing the 
data, AEM analysis, which was designed to take trends into account, 
should be applied to the non-detrended series. 


• MEM analysis can be applied to data series that were detrended to 
remove the directional component.


=> By applying both methods to a time series, one can differentiate the 
directional  and  non-directional  components  of  variation  in  a 
[multivariate] series.


=> Detrended palaeoecological sediment core data, for example, could 
be studied by dbMEM analysis, and undetrended by AEM analysis.




Computer programs

in the R statistical language


On R-Forge: http://r-forge.r-project.org/R/?group_id=195

     PCNM package for classical PCNM and dbMEM (P. Legendre) 

     AEM package (F. G. Blanchet)

     spacemakeR: an R package to compute dbMEM and generalized MEM (D. Dray)

     packfor: R package for forward selection of explanatory variables (S. Dray)

On the CRAN page: http://cran.r-project.org

     vegan package : function varpart for multivariate variation partitioning; 

     pcnm(): construction of classical PCNM eigenfunctions for RDA and CCA; 

     ordistep() and ordiR2step(): forward selection of explanatory variables.
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