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Motivation

Motivations for the use of weather generators

Many natural phenomena and human activities depend on wind conditions

Production of electricity by wind turbines

Evolution of a coast line

Maritime transport

Drift of objects in the ocean

...

Wind data generally available on short periods of time

50 years of data maximum

Not enough to compute reliable estimates of the probability of
complex events

Stochastic model used to simulate artificial wind conditions

Monte-Carlo methods
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Context and goals
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Available data:

◦ Reanalysis data from ECMWF:
wind speed intensity

Goals:

◦ to propose a stochastic state-space model for wind fields

◦ to generate realistic wind conditions



Context and goals

One of the main difficulties and goals is: reproducing space-time
motions of meteorological systems e.g. propagation of low pressure
systems.
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Wind data

Plan

1 Motivation

2 Context and goals

3 Wind data

4 Model
Gaussian Linear State-Space Model
Parameter Estimation

5 Validation of the model
Parameters interpretation
Validation of the model

6 Conclusion and extension of the model



Wind data

Data under study: reanalysis data ERA Interim from ECMWF

Available with regular sampling: ∆x = 0.75o , ∆t = 6h

To eliminate seasonality: study of months of January from 1979 to 2011

Wind speed are squared root transformed to reduce skewness

18 gridded points under study in the North-East Atlantic channel
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Wind data

Some time series
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Wind speed at location 1
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Wind speed at location 7
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Wind speed at location 18

Time shifts are observable on time series



Wind data

Some statistics computed on data
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Autocorrelation at location 5

Figure: Spatial correlation at temporal lag 0 and autocorrelation function at
location 5
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Model Gaussian Linear State-Space Model

Modelling by a Gaussian state-space model [DK01], [CMR]
Xt = bXt−1 + εt
Yt(1) = Z (1)Xt + ηt(1)
...

...
Yt(K ) = Z (K )Xt + ηt(K )

for t ≥ 0,

Yt ∈ RK : vector of observations, K : number of locations studied
Xt ∈ R: scalar hidden state,
ε and η are serially independent Gaussian white noises
εt ∼ N (0,Q) and ηt ∼ N (0,R)

Parameters and equations interpretation:
X : · mean squared root wind conditions at regional scale,

· temporal dynamic is contained in the state equation,

Y : mean corrected squared root wind speed at local scale,
Z : links regional and local scales,
R : contains a part of the spatial covariance between studied locations.



Model Gaussian Linear State-Space Model


Xt = bXt−1 + εt
Yt(1) = Z (1)Xt + ηt(1)
...

...
Yt(K ) = Z (K )Xt + ηt(K )

for t ≥ 0,

εt ∼ N (0,Q) and ηt ∼ N (0,R)

Stationarity:
Under the assumption |b| < 1, the autoregressive process X is stationary
and so is the process Y [BD].

Identifiability:
Q is fixed in order to ensure identifiability of the model (study of the
second order structure of the Gaussian process Y [TA10]).



Model Gaussian Linear State-Space Model

Cross-correlation

The estimate of cross-correlation shows that some locations have temporal
advance on others:
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Cross-correlation at locations 1 & 18

To capture this phenomenon, we add more flexibility to the model



Model Gaussian Linear State-Space Model

More flexible dependance from regional mean wind speed

To get a more flexible temporal dependance of observations from the
regional mean wind speed, we consider the followed observation equation:

Yt = Z0Xt + Z1Xt−1 + ηt ,

Taking X̃t =

(
Xt

Xt−1

)
, the system can be rewritten as:{

X̃t = B̃X̃t−1 + ε̃t
Yt = Z̃ X̃t + ηt

for t ≥ 0,

with B̃ =

(
b 0
1 0

)
, Z̃ =

(
Z0 Z1

)
and ε̃t ∼ N

(( 0
0

)
,

(
Q 0
0 0

))
.

This model is still a linear Gaussian state-space model.



Model Gaussian Linear State-Space Model

Identifiability: This model brings new problems of identifiability....

Covariance structure: [Cre], [HR89], [Abr]

(Observation equation: Yt = Z0Xt + Z1Xt−1 + ηt , ηt ∼ N (0,R))

For parsimony purpose we choose to fit the covariance observation error
matrix to a parametric family of spatial covariance:

Assume that R depends on the distance between locations:

Ri ,j =
(
σiσj(exp(−λ1d

2
i ,j) + λ2δi ,j)

)
for i , j ∈ {1, ...,K},

with (σ1, ..., σK , λ1, λ2) to be estimated and strictly positive.

Advantage: it reduces the number of parameters to estimate



Model Parameter Estimation

Maximum Likelihood Estimation

Generalized Expectation-Maximization algorithm is used [CMR]:

E-step: Linearity and Gaussianity of the model enable to use Kalman
filter and smoother to derive the incomplete likelihood,

M-step: . Explicit forms of the parameters: B̃ and Z̃ ,
. R is estimated by numerical optimization of a part of

the incomplete likelihood.

Starting point: Least square estimation on second order structure.



Validation of the model

Plan

1 Motivation

2 Context and goals

3 Wind data

4 Model
Gaussian Linear State-Space Model
Parameter Estimation

5 Validation of the model
Parameters interpretation
Validation of the model

6 Conclusion and extension of the model



Validation of the model Parameters interpretation

Estimate of Z :
Observation equation:Yt = Z0Xt + Z1Xt−1 + ηt ,
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Estimation of Z1

Western locations depend more on Xt than on Xt−1 and conversely for the
eastern locations.



Validation of the model Parameters interpretation

Estimate of R:
Observation equation: Yt = Z0Xt + Z1Xt−1 + ηt , ηt ∼ N (0,R)
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Location 12 has the weakest error measurement, the most westerly and
easterly locations have the largest ones.



Validation of the model Validation of the model

Comparison of the smoothed hidden state X̂ to the squared root of wind
speed Y at locations 1 and 18, with

X̂t = E (Xt |Y1, ...,YT )
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–Smoothed hidden state

–Squared root wind speed
at location 1

–Squared root wind speed
at location 18

X is a good compromise between square root of wind speed at each
location.



Validation of the model Validation of the model

Marginal Distributions

Figure: Locations 1 and 12

Weak values are overestimated and high values are not correctly
reproduced. Location 12 distribution matches more with the data
distribution.



Validation of the model Validation of the model

Temporal dynamic
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Cross-correlation between locations 1 & 18

◦ Time shifts are not entirely
reproduced.
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Autocorrelation at location 12

◦ For about one day time-lag, temporal
dynamic is reproduced in some locations
and underestimated for greater
time-lags.



Validation of the model Validation of the model

Spatial structure
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Spatial covariance of the observed process Y is underestimated but the
shape is in part reproduced.



Validation of the model Validation of the model

Spatial structure
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Figure: Empirical correlation of Y at lag 0 against distance

Correlation is underestimated for distances smaller than 300km and
variability is larger for distances greater than 400 km.



Validation of the model Validation of the model

Comparison of different spatial structures
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Figure: Corrrelation against distance for Gaussian variogram model and exponential variogram model

Spatial structure and others properties are not reproduced with the exponential
model which overestimates some parameters and underestimates others.
Comparison of log-likelihood:

Exponential variogram model 36779

Gaussian variogram model 43286
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Conclusion and extension of the model

Conclusion

Advantages of the model:

◦ Ease of interpretation of the parameters,

◦ Linearity and Gaussian properties: ease of implementation of
estimation procedure

◦ Some statistics are well reproduced by the model,

Drawbacks:

◦ Lack of flexibility of the model: it only catches average behaviors of
wind speed in the area, does not account for the weather type,

◦ Linearity of the model may not be appropriate to catch possible local
effects,



Conclusion and extension of the model

• Improving the temporal dynamic of this model,

• Adding Markovian regime switching to account for the weather type and
to give more flexibility to the model,

• Modelling wind speed and direction at the same time will be more
relevant: the dependance is different according the direction in which the
wind is blowing, and we know that according the weather type the wind
has prevailing direction.



Conclusion and extension of the model
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Conclusion and extension of the model
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Conclusion and extension of the model

diagonale R simulée:
0.57 0.56 0.56 0.55 0.56 0.56 0.55 0.55 0.57 0.59 0.62 0.57 0.63 0.63 0.65
0.59 0.59 0.63
diagonale R observée:
0.66 0.66 0.64 0.65 0.65 0.63 0.64 0.64 0.64 0.65 0.65 0.60 0.64 0.64 0.65
0.63 0.61 0.66
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