Wavelet Analysis for
Sediment Transport Investigatith

»

Craig Jones
” Grace Chang

craigseaeng@gmail.com /
Marine Science and Engineering

Institute:
Santa Cruz, CA, USA

4



The purpose of computing is insight, not numbers.

Richard Hamming



Objectives

* Background

— Passaic River

* Observations
* Wavelets
* Results

— Continuous Wavelet Transforms
— Cross Wavelet Transforms
— Wavelet Coherence

* Summary & Conclusions
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Why do we care about sediment
transport?

* The Lower Passaic River (LPR) below the Dundee Dam is
contaminated with a range of persistent chemicals

* Many of these contaminants are hydrophobic and therefore
strongly sorb to sediments in the system.

* Since the contaminants are generally strongly sorbed to the
sediments, sediment transport is a key to understanding
\environmental risk and \remedial selection



Estuarine Circulation

Freshwater Flow from
FPassaic River
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Density gradients combined
with tides contribute to
residual flow
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Newark Bay

* Constantly adjusting balance between fresh river inflow,
denser salt water in Newark Bay, and tidal mixing

* Netinflow on the bottom and net outflow at the surface is
typical of apartially mixed estuarine circulation



Process Balance
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Long Term Behavior

Bathymetric
data and
geochronology
analysis show a
net infill of
sediments in the
LPR since the
significant
dredging in the
20t century.

Lower most
segment represents
last silt segment.

Next segment
centained mostly
sand.
—Ar—Cs137 (pCilg) ----1963 horizon
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Cs-137 Downcore Profiles for 2005 High Resolution Cores Figure 13-3
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Sediment Bed Trends

® Small scale
heterogeneity at
the bed follows
morphologic
features

® The sediment bed
generally behaves
consistent with
standard river
morphology



Water Column Measurements

* 5 monitoring
platforms were
placed in the river
from October
through December

* The platforms
measured currents,
turbidity,
temperature, and
salinity
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* TSS decreases with increasing RM
* Peaks in TSS and precipitation

* Spring-neap tidal oscillations

What are the underlying physical
processes behind TSS variability in the
LPR? When and where do they occur?



Platform Data Analysis
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* Flux calculations at each platform show spatial and temporal trends in
estuarine circulations (lower river) and riverine transport (upper river)



Time Series Analysis

* Fast Fourier Transforms (FFTs) are the traditional method of
determining frequencies present in a time series signal.

. : Current velocity (mi/s) 5 TSS (mglL)
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* Coherence finds common periodicities between two different time
series but commonalities are not localized in time.



Time Series Analysis

*The Windowed Fourier Transform (WFT) also provides and analysis
tool for extracting local frequency information

*WFT is performed by essentially sliding a segment of defined
length along the time series and performing short time Fourier
transform

*Drawback of WFT
*Imposes a response interval which causes problems with high
and low frequency components
*Method is highly dependent on window length

*Generally not as effective for datasets with a larger range of
frequencies



* Wavelet analysis to transform time series into time-frequency
space

* Continuous wavelet transforms (CWTs): analyze localized,

time series at multiple scales.

Morlet Wavelet

Signal

Pl = [/ (e, (A @ /24

The wavelet can be translated to any point in

the dataset (n) and scaled by a factor (s) which is
directly related to frequency.
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Wavelet Transform

Conduct Fourier transform on the wavelet

1
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Conduct Fourier transform on the time series

Choose a scale range (s), generally starting with 2dt to something
less than 72 N

Multiply normalized wavelet for each scale by transform of times
series
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Example

* ASST time series is
transformed with wavelet
analysis (Torrence and Compo
1998)

* A cone of influence is defined
by the region of the wavelet
transform where edge effects
become significant

* Significance levels are outlined
where confidence levels are
95% above background for the
wavelet power spectrum

ENSO provides a substantive addition to

the ENSO literature. In particular, the
statistical signilicance testing allows
greater confidence in the previous wave-
lot-bascd ENSO results of Wang and
Wang (1996). The use ot new datascts
with ]()ng&, - s

mee.

cribos the datasots
used for the examples. Section 3 de-
bes the method of wavelel analysis
using discrcete notation. This includes a
disc on ol the inho nitations ol

the windowed Fourier transtform (WITT),
the definition of the wavelet Lr.lnslorrn. e s

R e

the choice of a wavelot ba e
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thcore velet spoecetra for both
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local wavelet powe:
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ared-noise process with a lag-1 coefficient of’
red regsionss on either end indicate (he “eone ofinflusnice.” where
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cross-wavelet spectra, and wavelet co-  pormalized variance of 2.0
herence. The summary contains a step-
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ent ord have boen removed Lo dofine an anomaly

2. Data

Several time series will be used for examples of
wavelet analysis. These include the Nifio3 sea surface
temperaturs (881 used as a moasure of the amplitude
of the Ll Nifio—Southern Oscillation (ENSO). The
N ST index is defined as the seasonal SST av-
eraged over the central Pacific (5°S—5°N. 90°—
150°W). 13ala for 1871 1996 arc from an arca avor-
age of the UK. Meteorological Office GISST2.3
(Rayner et al. 1996). while data for January—June 1997
& Trom the Climate Pred m Contor (C1C) opti-
mally interpolated Nifio3 SST index (courtesy of .
Grarrell at CPC, WOAA). The seasonal means for the

03 5

&2

time serics. The Nifio3 $S1 is shown in the top plot
of rxg 1a.
dded soa lovel surc (S1.1%) data is from the

LTI\M()/(“‘SIR() historical GMSTE2. 1 (cowrtesy of D.
Parker and T. Basnett, ITadley Centre for Climate Pro-
diction and Roscarch, UKNM). The data is on a 5°
global grid, with monthly resolution from January
1871 Lo December 1994, Anomaly Lime series have
been constructed by removing the first three harmon-
ics of the annual cyclo (periods ol 365.25, 182.625, and
121.75 days) using a least-scuares it

The Southern Oscillation index is derived from the
GMSILP2. 1 and is dolinoed as the scasonally avoragod
pressure difference between the castern Pacific (20°S,
150°W) and the western Pacific (10°8, 130°F).
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Application to the Passaic River

* Apply a wavelet to time series

The result is a collection of time-frequency representations

A Wavelet analysis performed on velocity, salinity, and
precipitation time series data collected along the LPR

What is the spatial extent of tidally induced sediment
resuspension and transport versus high sediment loads
during river outflow due to precipitation events?
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Results - CWTs
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CWTs

* Spring-neap tidal signal strongest for TSS and Velocity

* Semi-diurnal tidal frequency significant for TSS and Velocity

* Semi-diurnal tidal signal strongest for Depth

* Semi-diurnal tidal frequency significant for Salinity at and
downstream of RM 6.7

* Precipitation events in October and December significant for Salinity
at and upstream of RM 6.7

* Storm event salinity periodicities strongest at 3 days
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Wavelets on Multiple Series

* Cross Wavelet Transforms (XWTs) and Wavelet Coherence
(WTC) identify the relationships between (e.g. TSS and
salinity) and isolate periods when these relationships are
statistically significant

* XWTs reveal areas with common high power
H.rﬁi‘i’ — Hl.r.-'l:‘ Hl.ri’i-c

* WTCis similar to a traditional correlation coefficient localized
in time frequency space



& Results — XWTs & WTCs
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Summary

XWTs & WTCs

TSS and Salinity exhibit high common power and are coherent at:
* Semi-diurnal tidal periodicity (0.5-day)
RMs 6.7, 4.2, and 1.4 only
High salinity (flood tide) = low TSS, low salinity (ebb) = high TSS

*Significant precipitation events (3-days) in October and December
RMs 13.5 and 10.2 only, RM 6.7 for October event
Low salinity (precipitation) = high TSS, high salinity = low TSS
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Conclusions

* Wavelet analysis facilitates investigations of relationships between
TSS and physical parameters

* Transport variability in sediment along the LPR is influenced by :
(1) Tidal fluctuations originating at the mouth of the river
Semi-diurnal (0.5-day): Low and ebb tide = high TSS

Spring-neap (14-days)

(2) Freshwater flow associated with precipitation

Significant events interrupt tidal signal

October at all RMs (strong down to RM 6.7)

December at RMs 13.5 and 10.2
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