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Outline

* Background

® Full-scale measurements from containerships
— Time series of structural stresses (sample frequency 25 Hz)
— Wave height, ship speed,heading... (each 30 minutes)
— Wave (WF) and high frequency (HF) signals from the stresses

— Fatigue and extreme response due to WF and HF signals

* Modeling of whipping/springing by LMA
— Spectrum and kernel for whipping signals

— Modeling of HF + WF response
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Wave frequency (WF) ship response

Vertical 2-node vibrations of ship as a beam
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WF signals: the response frequency is close to the encountered wave frequency
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HF signals- whipping/springing
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Whipping signals: due to transient loads
such as slamming, green water
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Fatigue problems and extreme loadings

23 JUN 2006

Slamming loads applied on ship’s bow section and
effect of extreme loadings (photos from internet)

Fatigue cracks observed in ship structures with
only about 2-5 years service (Gaute Storhaug).
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Containerships in the future

One of the biggest container vessel 350 m long (more than 12 000 TEU containers)
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The full-scale measurements

* Measurements from 2 different container ships

* Based on the time series of data, we will study
—If WF signals in a stationary sea condition are Gaussian
—How much fatigue damage caused by WF signals
—HF effect to ship’s fatigue and extreme response

—How to model HF signals by LMA
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Measurement instruments

® Strain sensors

¢ Wave radar

¢ Wave buoys

e Satellites/hindcast
* GPS

* Wind sensor

* Accelerometer

®* Rudder angle

* RPM

Gaute Storhau



SHIPPING AND MARINE TECHNOLOGY
CHALMERS
UNIVERSITY OF TECHNOLOGY DIVISION OF MARINE DESIGN

Ship sailing routes

2800TEU containership
*7 voyages from EU to NA
*7 voyages from NA to EU

°Time in total 6 months

4400TEU containership
*2 voyages from EU to NA

*2 voyages from NA to EU

*Time in total 2 months
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Measured time series of stresses
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Measured times series of ship structural stresses in 30 minutes (a stationary sea state)
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Spectra of measured ship responses
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Wave frequency
responses

. The real signals of all sea
High frequency states contain 3 peaks:

response

| i. Wave frequency signals
(about 97% energy)

ii. High frequency signals (3%)

Measurements noise iii. Measurement noise

. High frequency signals
Transient oscillation--
whipping, and resonance
vibration -- springing.

Nomalized spectral density S(w) [mz sfrad]
o

0 2 4 6 8 10 12

|
Radius frequency  [rad/s] Hard to compute!

Response spectrums at different sea sates during one winter voyage
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Definition and time series of HF response
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Total response = WF + HF (whipping/springing)
1. WF signals: w/J/[0, 2] [rad/s]
2. HF signals: w(J/[2, 7] [rad/s]

3. Measurement noise: w> 7 rad/s
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Fatigue damages due to HF response
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WF response caused fatigue

Fatisue Damage= f
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Operation profiles Wave environment
V' - Ship speed H,— Wave height
0 - Heading angle T,— Wave period
T - Sailing time

(HsaT )

2

Structural response
characteristics, got
from engineering
analysis
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Measured Hs in one storm

Significant wave height (m)
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Sea state numbers
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Calibration of wave measurements
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HS measured by onboard radar (m)

1. Onboard wave measurements include some uncertainties;

2. Radar measurements should be calibrated before practical
applications;

3. Some statistical model may be used to interpolate Hs for missing data.



CHALMERS

UNIVERSITY OF TECHNOLOGY

SHIPPING AND MARINE TECHNOLOGY
DIVISION OF MARINE DESIGN

Results: Fatigue due to HF signals (1)
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Results: Fatigue due to HF signals (2)

* General container/cargo — 23%

e 2800 TEU — 28%

* 4000 TEU - 39-46%

* 4400 TEU — 37% (model test)

* 4600 TEU — 35% ( Rathje et al. 2012)
* 4400 TEU — 26%

* 6700 TEU — 50%

* 8600 TEU — >60% (model test)

* 14000 TEU - 57% (Rathje et al. 2012)

The increase of extreme response follows similar trend!

Gaute Storhaug
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HF effect on extreme response

--from the full-scale measurements of 2 container ships
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Predict extreme response by upcrossings

is the time series of stresses (signals) in 1 year

*(x) is expected no. of upcrossings during one year;
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Extreme response due to HF effect

WF+ HF
gf’” o A h o o Step 2: Upcrossing from
8 ”WW extracted WF signals
A R N T (observed and Rice’s formula)
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Step 4: Extrapolate the
upcrossings to some
extreme levels to get X..

Step 1: Extract WF signals from the
measurement (WF+HF signals)
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WF signals - is it Gaussian?
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HF signals - extreme stress
Measurements of 2800 TEU
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HF response -2 extreme stress
Measurements of 4400 TEU
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Modelling of ship response

* WF signals by Gaussian processes
— Response spectrum can be computed

— Gaussian process is simulated from response spectrum
* HF signals by LMA processes

* Hybrid model to combine the two processes
(correlated/independent)
— WEF signals — Gaussian process (low frequency)

— HF signals -- Symmetric LMA (high frequency)
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Wave frequency (WF) ship response

Hydrodynamic loads.
*Loading conditions
*Ship speed

*Heading angles

*Panel method for
hydrodynamic analysis

Structural analysis:
*Global response
— Simple beam
theory
— Direct Finite
Element analysis
*Local structural details

Energy density function
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Skewness and kurtosis
of HF signals
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Symmetric Laplace Moving Average (LMA)

® Gaussian Moving Average (GMA) process

X()= [, g(t- wdBw)= y g(t-t)Zdt

i

® Laplace Moving Average (LMA) process

X© = | g(t—wdaw ~ ) gle- ) Z/K;

In the GMA process, B(u) is the Brownian motion, while in the LMA
process, A(u) is the Laplace jump process, and g(f) is the kernel of
the response signal.
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Spectrum and kernels for WF response
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Spectrum and kernels for HF response
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Comparison of fatigue damages
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Extreme prediction

® Upcrossings of simulated ship response using observed Kurtosis
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Conclusions

* HF response induces average energy 3%

* HF response contributes fatigue > 30%

®* The wave frequency response is close to Gaussian
®* The HF response is symmetric process

* The LMA modeling works well to simulate ship
response for fatigue assessment

® For extreme prediction, it is very sensitive to decide
how to put on the whipping transient on the wave
frequency response. It will affect significantly of the
prediction.
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Thanks for your attention.
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