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Old station (1874) but new CNRS 
laboratory created in 2008:
• 35 researchers 
• 30 PhD students
• 100 members on site

Marine Station
(Lille 1 Univ.)

MREN
(Université du Littoral)

Laboratory of Oceanology 
and Geosciences - LOG
Wimereux



Activities as a marine station:
• Research
• Teaching
• Hosting (students, researchers)
• Observation

Interdisciplinary research:
• observation/experimentation/modelization
• specialized in coastal research
• from bacteria to satellites
• from microscales to climate

Interdisciplinary oceanology studies: physics, biology, geomorphology



Outline

Motivations

Structure functions as a classical tool in turbulence for 
scaling processes

Arbitrary-Order Hilbert-Spectral-Analysis

Examples of application



Motivations (1)
• In oceanography many studies are descriptive
• Other studies rely on models (too often 
considered as virtual reality)
• Other sciences have more rapid progress: 
comes from universality in their results

—> we should also search for universal 
relations in oceanography (and geosciences in 
general)  
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Motivations (2)
• Search for stochastic universality
• Inspiration by turbulence theory
• Example: Kolmogorov 1941 -5/3 power law 
spectrum; other slopes found for other 
hypotheses and cases

—> provides a possible generic framework to 
s tudy ing var iab i l i t y a t a l l s ca le s in 
oceanography (and geosciences), search for 
stochastic universality  



• Characterized by:
– Large Reynolds number  
– High variability on a large range of scales
– Dissipative system
– Chaos, loss of predictability

• One of the last domains of classical physics 
which is not solved

• Large number of applications

• Deterministic Navier Stokes equations but 
stochastic methods to address the problem

Fully developed 
turbulence



  Richardson (1922): energy cascade from large to small scales

 Kolmogorov (1941): dimensional analysis, leading to a scaling power 
spectra for velocity fluctuations in k-5/3

Experimental origin of multiplicative 
cascades

Richardson and Kolmogorov: energy cascade



Experimental validation of the -5/3 law of Kolmogorov

Checked in many situations 
since the 1960s

Experimental origin of multiplicative 
cascades



1949-1962: discovery of intermittency in turbulence: fluctuations of 
the velocity difference are bursty

Intermittency

Many pikes ; large intensities ; long-range correlated



 : moment function 
(also, in probability theory, a second 

characteristic function) 

Framework for intermittency studies

Scaling nonstationary process with stationary increments: 
Statistical moments of structure functions

Brownian motion

fractionnal Brownian motion

Statistical scale invariance of velocity fluctuations

Link with power spectrum: 



1. Estimate                                 versus T for many different values of T  
Recipe for multifractal analysis using structure functions

If           is linear: monofractal;
If           is nonlinear: multifractal. its parameters can be estimated 

First Parameter:  

2. Log-log plot and estimation of the value of             as the slope of the 
straight line obtained  

3. Perform this for many different values of q and obtain a function 

Other parameters depend on the model chosen:
Lognormal, log-Lévy, log-Poisson (She-Lévêque)…

Framework for intermittency studies



A general feature of  high frequency 
coastal Environmental Data

Stochastic variability on a large range of scales

Turbulent-like small-scale stochastic fluctuations

Large-scale deterministic period (tidal and daily 
cycles...)

Traditional methodologies such as structure 
functions fail to detect the correct scaling property 
because of the strong forcing



Arbitrary-order Hilbert 
Spectral Analysis

A powerful multiscale analysis 
method
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Empirical Mode Decomposition – EMD
+

Hilbert Spectral Analysis – HSA
↓

Hilbert-Huang Transform – HHT

⇓
Arbitrary Order Hilbert Spectral Analysis

Huang et al. Proc. R. Soc. Lond., 1998, 454, 903-995
Y.X. Huang, F.G. Schmitt, Z.M. Lu and Y.L. Liu, EPL, 2008 84:40010



 A new analysis technique proposed by Huang et al. (1998, 1999)

 Decomposes a signal into a sum of modes, without leaving the time 
domain

 The mode functions form a basis, nearly orthogonal

 Each mode is localized in frequency space: act as a filter bank

 Can be used for detrending or denoising time series

 Can be applied to nonlinear and non-stationary data, even with 
relatively small number of datapoints

 Complementary to Fourier or Wavelet analysis

 Empirical Mode Decomposition (EMD)



 This approach was first proposed by Norden Huang 
(NASA)  in 1998 and 1999 in oceanography to analyze 

water waves

 2500 citations for this 1998 paper

Hundreds of papers applying the new 
method to various fields

 ocean, atmosphere, signal processing, 
mechanical engineering, climate studies, 
earthquakes, biomedical studies…

 but still no exact mathematical results



Advantages of EMD
•  Locality: characteristic scale is defined as the distance between 
successive local maxima (or minima)
•  Complete self-adpativeness: no basis (function) assumption a priori

 EMD Algorithm
(1) Identify all local maximum (resp. minimum) extrema of  

(2) Interpolate maximum (resp. minimum) by cubic spline to form upper (reps. 
lower) envelop            

(3) Compute the average 

(4) Extract the detail 

(5) Iterate on the residual 
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Intrinsic Mode Function (IMF)→ mono-component signal
! the difference between the number of local extrema and the number

of zero-crossings must be zero or one;

! the running mean value of the envelope defined by the local maxima
and the envelope defined by the local minima is zero.
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A typical IMF mode from EMD decomposition

Huang et al. Proc. R. Soc. Lond., 1998, 454, 903-995
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Example (taken from Flandrin, http://perso.ens-lyon.fr/patrick.flandrin/)!
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Example (taken from Flandrin, http://perso.ens-lyon.fr/patrick.flandrin/)!
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Example (taken from Flandrin, http://perso.ens-lyon.fr/patrick.flandrin/)!

10 20 30 40 50 60 70 80 90 100 110 120
-2

-1

0

1

2
IMF 1;   iteration 0



25

Example (taken from Flandrin, http://perso.ens-lyon.fr/patrick.flandrin/)!

10 20 30 40 50 60 70 80 90 100 110 120
-2

-1

0

1

2
IMF 1;   iteration 0



26

Example (taken from Flandrin, http://perso.ens-lyon.fr/patrick.flandrin/)!
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 Decomposition



 Hilbert Huang Algorithm



 Hilbert Huang Algorithm



 Hilbert Huang Algorithm



 Hilbert Huang Algorithm



Our contribution: 

Arbitray Order Hilbert Spectral Analysis



Local extraction of amplitude and frequency 
information

Marginal energy spectrum in Hilbert frame

Turbulence 5/3 
spectrum:



 Spectra of successive modes: narrow banded

EMD as a filter bank for turbulence data

 Dyadic filter bank



Local extraction of amplitude and frequency 
information

Generalisation: arbitrary order Hilbert 
spectral analysis

Generalized to moment of order q>0:

For a scaling process one expect using 
dimensional scaling arguments:



Expressions for scaling processes

For a monofractal process

For a scaling process one expect using 
dimensional scaling arguments:

For a scaling lognormal process

For general multifractal processes, nonlinear function

ξ(q) =1+ q
2
− µ
2
q2

4
− q
2

⎛
⎝⎜

⎞
⎠⎟



Verification for fractional Brownian motion

Scaling with

Cov X (t),X (t ')( ) = 1
2 t

2H
+ t '

2H
− t − t '

2H( )Var(X (1))

β =1+ 2H ζ (q) = qH ζ (q) = qH

ξ(q) =1+ qH



Verification for synthetic multifractal data

Synthetic multifractal 
series with lognormal 

statistics

Multifractal random 
walk

u(x) = ε (x ')1/2
0

x

∫ dB(x ')

< Δuτ
q
>≈ τ ζ (q)

ζ (q) = q
2
− µ
2

q2

4
− q
2

⎛
⎝⎜

⎞
⎠⎟



Scaling exponents 
for 70,000 
realizations, with 
mu=0.25. 

The scaling 
exponents provided 
by the two methods 
are in good 
agreement with each 
other and with the 
theory

Verification for synthetic multifractal data

Validation of the method for multifractal signals



 Generalized EMD-HSA method can be 
used to estimate monofractals and 
multifractal exponents.

  Seems to provide parameters with a better 
precision than the classical structure 
functions.

  Estimation of multifractal exponents in 
frequency space



Influence of large scale forcing

Many data series from the real world, e.g. geophysics, present intermittency 
mixed with large-scale deterministic forcing (often from astronomic origin)

16384 pts fBm with H=1/3

X '(t) = X (t)
Var(X )

+ I sin 2π fdt( )



Influence of large scale forcing

Structure functions Arbitrary order HAS

Much smaller influence range of large scales for 
arbitrary order HSA than for structure functions



 Structure function analysis (or the variant 
MFDA) are strongly influenced by large scales

  Not adequate to study scaling properties 
when there is large scale forcing

EMD-arbitrary order HSA is a good 
alternative in these cases, to retrieve scaling 
and intermittent properties



Example of  analysis: 
- MAREL high frequency data
- bivalve microclosing behavior
- irradiance high frequency time series
- phytoplankton abundance time series 



MAREL Data

A photo showing the MAREL system in Boulogne-sur-mer.
Operated by Ifremer. Automatic measurements of many 
parameters (T, S, pH, DO, etc.) every 20 minutes



MAREL Data

The recorded MAREL water temperature data from Mar. 
2004 to Dec. 2010.



Power Spectral Density



Scaling exponents extraction using 
EMD and Hilbert spectral analysis



Bivalve opening time series
collaboration with Arcachon marine laboratory (JC Massabuau, G Durrieu)

High frequency bivalve opening time series (every 1.6s)





Extraction of 
intermittency 
parameters
HSA works better than 
structure functions



Huge intermittent fluctuations 
For the clear sky fit, I0 is unknown: cannot be determined from the data 

  

 
I =

I0 c1 − c2 cos π t
12( )    if  c1 > c2 cos π t

12  
0                          if c1 ≤ c2 cos π t

12  

⎧
⎨
⎩⎪

High frequency irradiance 
time series

 Strong high frequency fluctuations of 
irradiance; not smooth as sine-model 
predicts; there are consequences for 
phtoplankton production models



High frequency irradiance 
time series



 Data from INRA Thonon (CIPEL programme, France), courtesy of 
Orlane Anneville (Fascicle BioAsia project); coll. Sami Souissi (LOG)

Phytoplankton sampling from 1974 to 2000 at lake Geneva, 
monthly sampling. Biovolume measurements

 491 different sampling times, 184 species identified

Phytoplankton abondance data, lake Geneva



 Phytoplankton sampling from 1974 to 2000 at lake Geneva, monthly sampling

 491 different sampling times, 184 species identified

Phytoplankton abondance data, lake Geneva

 Bursty dynamics; many zeroes (90%)



Bursty, intermittent dynamics of the total biovolume

Biovolume dynamics and statistics

Total biovolume (all species)



Logarithm of total biovolume

Biovolume dynamics and statistics

Total biovolume (all species)
Stationary and intermittent series

Probability density function close to 
Gaussian: lognormal process



Mean mode frequency: filter bank
 7 modes for the decomposition 

Each mode has a smaller characteristic frequency, or larger 
characteristic time scale

 exponential decay of the mean frequency for each mode: filter 
bank with scale factor 1.83

Mode # Mean scale 

1 3.5 months

2 9 months

3 18 months

4 26 months

5 3.5 yr

6 7.9 yr

7 12.8 yr



Multiplicative mode reconstruction



Conclusion
Search for universality: exact and generalizable 
results to characterize stochastic fluctuations in 
geosciences

Scaling regimes/deterministic forcing

Need of new methods to study these fields and their 
universality

A Hilbert-based methodology is proposed here

Several high frequency time series shown here as 
examples 

More info: www.fg-schmitt.fr

http://www.fg-schmitt.fr
http://www.fg-schmitt.fr
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