

lfremer

DURABILITY OF SYNTACTIC MATERIAL IN A MARINE ENVIRONMENT

P-Y. LE GAC¹, M. LE GALL¹,G. LOUBRIEU^{1,2}, G. STEWART³, D. MELOT²

¹: Material and structures group, Ifremer, France

- ²: TOTAL, France
- ³: Balmoral, Scotland

E U R O M E C H - B R E S T - 28/09/2019

Tremer

BALMORAL

Agenda

Lab presentation

General context of the study

Results

- * mechanisms of water absorption (resin and syntactic)
- * affecting parameters
- * lifetime prediction

Conclusions and futur work

Lab presentation

Tfremer

TOTAL

IFREMER: French Research Institute for Oceans

- France has the second biggest exclusive maritime domaine
- Created 35 years ago
- 1500 people

Exploration of oceans

Suitable Exploitation of ressources

TOTAL

Lab presentation

Marine Structures Laboratory: Behavior of structures in a marine environment - 42 permanent + 14 PhD

Hydrodyamics

Test under pressure

Material behavior and durability

Lab presentation – Some activities

Ifremer

Fishing Technologies

Τοται

General Context of the study

Decrease in oil availability in shallow water

Need to go deeper for production with a target of 4000m !

By increasing water depth, hydrostatique pressure is increased...

Long term behavior of syntactic materials at 4000m ? (How to test, how to qualify, how to accelerate...)

Water absorption in pure syntactic material

Water absorption in pure epoxy resin

No Pressure 15°C Sea Water

Impact of the presence of glass bubbles on water absorption?

2.

BALMORAL

Water absorption in pure syntactic material

Pressure < Collapse 15°C Sea Water

No saturation plateau

Large water uptake 15% vs less than 0.4% expected

TOTAL

Results

1 mm

Section Sectio

Water absorption in pure syntactic material- mechanisms

Water Uptake (%)

Low Resolution Water front is highligted

5 mm

High Resolution Glass bubbles are filled with water

13

BALMORAL

ii) Mechanisms of glass bubbles collapse need more investigation

What are affecting parameters? How to accelerate water absorption?

KEALMORAL

Ifremer

Τοται

Water absorption in pure syntactic material – Testing Temperature

Increase in temperature leads to an increase in water absorption rate BUT new degradation process can occurs !

Tremer

Results

KALMORAL

Water absorption in pure syntactic material – Pressure

Increase in pressure leads to an increase in water absorption rate BUT....

emer

ΓΟΤΑΙ

Water absorption in pure syntactic material – Pressure

When samples are overpressurized water diffusion mechanisms are changed

Increase in pressure leads to an increase in water absorption rate BUT there is a limite for accelerate ageing tests !

TOTAL

Results

Water absorption in pure syntactic material – Sample size effect

- 25 * 25 * 25 mm - 50 * 50 * 50 mm - 75 * 75 * 75 mm

The smaller is the sample, the faster is the water absorption

Salmoral

Τοται

Water absorption in pure syntactic material – Sample size effect

Water absorption can be normalized by sample size (in this case)

Kalmoral

Water absorption in pure syntactic material – type of glass bubbles

It is possible to reduce water ingress by using a upper grade of glass bubbles

i) Water absorption rate can be increased by increasing ageing temperature and/or pressure.

BUT THERE IS A LIMIT !

- ii) Water ingress at a specific pressure can be reduced changing glass bubbles types (but the density is affected)
- iii) Sample size reduction can be used to accelerate water ingress in pure syntactic material.

What are consequences of water absorption? Can it be predicted ?

TOTAL

Results

Insitu measurement of buoyancy loss in pure syntactic

Presure Vessel

Sea water Regulated 15°C 300 bars max

Load cell

5N Pressure compensation

Sample to promote water absorption

5mm thick plates 100 plates Duration : 1.5year

emer

Τοται

Insitu measurement of buoyancy loss in pure syntactic

Buoyancy loss is due to elastic compression and a time dependant phenomenon

Insitu measurement of buoyancy loss in pure syntactic

Samples removed and weighted

Ļ

16 %

BL calculated without volume variation (no creep)

Fo: initial buoyancy under pressure

Buoyancy loss is mainly due to water absorption in pure syntactic material

Life time prediction at service pressure

I - Several samples with different size immersed under pressure

Tremer

BALMORAL

Results

Life time prediction at service pressure

- I Several samples with different size immersed under pressure
 - II Water absorption after one ageing time

A linear behavior is observed so water absorption can be described

ΓΟΤΑΙ

Results

BALMORAL

Life time prediction at service pressure

- I Several samples with different size immersed under pressure
 - II Water absorption after one ageing time

III – Buoyancy loss in pure syntactic is due to water absorption

ΓΟΤΑΙ

Results

Life time prediction at service pressure

- I Several samples with different size immersed under pressure
 - II Water absorption after one ageing time

III – Buoyancy loss in pure syntactic is due to water absorption

In this case.

Tfremer

ΟΤΑΙ

Results

BALMORAL

Life time prediction at service pressure

- I Several samples with different size immersed under pressure
 - II Water absorption after one ageing time

III – Buoyancy loss in pure syntactic is due to water absorption

IV – Limitation of the approach

Тота

BALMORAL

General Conclusions

Need for life time prediction of buoyancy loss in synctactic material for deep sea applications

A methodology has been developed in Ifremer:

- Characterization of water absorption and affecting parameters,
- Partial understanding of degradation mechanisms,
- Lifetime prediction based on physical consideration.... In some cases.

Work still ongoing:

- Origin of Glass Bubbles collapse with water ?
- Prediction when sample size normalization is not possible ?

Thanks for your attention

