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Elastomers needed for marine applications 
(seal, protection)

Currently, thermoset elastomers are broadly used

• High chemical resistance

• Well known behaviour

1842: Vulcanization of NR by C. Goodyear

General Context
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Thermoset Elastomers
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But… processing is laborious
• Compounding (curing system, filler, plasticizer…) 

• Mixing

• Processing (extrusion, injection, moulding…)

• Curing 

And many chemicals are used 

REACH regulation

Registration, Evaluation, 

Authorisation and 

Restriction of Chemicals

REACH regulation (June 2017)
→ Restrictions over EU chemicals industries

Some of the chemicals required for 
thermoset elastomer synthesis and 
processing are concerned

They meet specifications 



Alternative solution : thermoplastic elastomer (TPE)
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TPEs = block copolymers
• Soft block: amorphous and rubbery

• Hard block: ½ crystalline

Long molecular chains physically tied 
with crystallites

3D network, similar to thermoset

TPEs benefits :

• Less chemicals → REACH ✔
• Easily processed

• Reprocessable

THERMOSET

TPE

But what about their behaviour

in marine environment ?

How to predict their lifetime ?

SOFT BLOCK HARD BLOCK CRYSTALLITE

RUBBER CHAIN CROSS-LINK



Materials
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Marine environment : exposure to air and water

3 TPEs of different nature initially considered

Soft block 
nature

Hard block 
nature

Resistance 
to water

Resistance 
to air

TPU-ester Ester Urethane Bad Good

TPU-ether Ether Urethane Good Bad

PEBA Ether Amide Medium Medium

TPU-ester highest resistance to air 
exposure

Water degradation will be the 
limiting phenomenon 

Necessity to assess degradation 
kinetics induced by water to 
estimate lifetime
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Lifetime prediction methodology: Arrhenius
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Usually, Arrhenius law is used to estimate the effect of temperature on ageing 
kinetics of polymers.

Assumption : “Polymer lifetime obeys Arrhenius law”

𝑡𝐹 = τ0 exp
−𝐸𝑎
𝑅𝑇

tF Lifetime

τ0 Pre-exponential constant

Ea Activation energy (constant)

R Ideal gas constant

T Temperature

How lifetime prediction is made today ?
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→ Accelerated ageing campaign

→ Extrapolation at real conditions temperature



Lifetime prediction methodology: Arrhenius
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Attractive because extremely simple of use… But careful of over simplification.

Rigorously, Arrhenius law applies to the rate constant of an elementary chemical 
reaction

→ In most cases ageing process involves several mechanisms ! 

In most cases, Arrhenius law is actually not rigourously valid

→ Necessity for a new lifetime prediction methodolgy

Example : CR rubber ageing in seawater

Comparison between Arrhenius 
extrapolation and naturally aged sample 
(23 years)

[Le Saux et al. 2013]



Macromolecular 
structure change

Lifetime prediction methodology
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Water 
exposure

Mechanical 
properties change

End-of-life

Development of 
Hydrolytic Kinetic Model

Structure - mecha. property
Relationship determination

End-of-life criterion
determination

Lifetime 
Prediction



Macromolecular 
structure change

Lifetime prediction methodology
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Water 
exposure

Mechanical 
properties change

End-of-life

Development of 
Hydrolytic Kinetic Model

Structure - mecha. property
Relationship determination

End-of-life criterion
determination

Lifetime 
Prediction



Ageing conditions
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Samples thickness chosen so diffusion 
phenomenon is not rate-limiting

Annealing at 110°C for thermal stabilization

Immersion in natural seawater tanks

at 40, 60, 80 and 90°C

Protocol

• Immersion

• took out at determined time

• drying

• testing
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Structure change: molecular chains scissions
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Water reacts with ester function (hydrolysis)

The reaction causes a polymer chain scission

Macromolecular structural changes 
investigated through chains scissions 
( measured by GPC)

H2O

H2O

H2O
H2O

H2O

H2O

H2O

H2O
H2O

H2O

SOFT BLOCK HARD BLOCK CRYSTALLITE

𝐸𝑠𝑡𝑒𝑟 +𝑊𝑎𝑡𝑒𝑟 → 𝐶𝑎𝑟𝑏𝑜𝑥𝑙𝑦𝑖𝑐 𝑎𝑐𝑖𝑑 + 𝑎𝑙𝑐𝑜ℎ𝑜𝑙
+ 𝒔𝒄𝒊𝒔𝒔𝒊𝒐𝒏



Macromolecular 
structure change

Lifetime prediction methodology
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Water 
exposure

Mechanical 
properties change

End-of-life

Development of 
Hydrolytic Kinetic Model

Structure - mecha. property
Relationship determination

End-of-life criterion
determination

Lifetime 
Prediction



TPU-ester

Seawater 80°C

Scissions prediction: Hydrolytic kinetic model 
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𝐸𝑠𝑡𝑒𝑟 +𝑊𝑎𝑡𝑒𝑟
𝒌𝑯𝒖

𝐶𝑎𝑟𝑏𝑜𝑥. 𝐴𝑐𝑖𝑑 + 𝑠𝑐𝑖𝑠𝑠𝑖𝑜𝑛

𝐸𝑠𝑡𝑒𝑟 +𝑊𝑎𝑡𝑒𝑟
𝒌𝑯𝒄 (𝑨𝒄𝒊𝒅)

𝐶𝑎𝑟𝑏𝑜𝑥. 𝐴𝑐𝑖𝑑 + 𝑠𝑐𝑖𝑠𝑠𝑖𝑜𝑛

𝐶𝑎𝑟𝑏𝑜𝑥. 𝐴𝑐𝑖𝑑
𝑲𝒂

𝑝𝑟𝑜𝑡𝑜𝑛

Model based on chemical reactions intervening in ester hydrolysis

[ester]0

[water]0

Input Output

Constants adjusted so model
fits experimental data

→ Extrapolation of chain scissions at low ageing temperature

Reaction-rate
constants

[scissions]
fct. immersion time

10-1 101 103 105

0

5

10

 

 

S
c
is

s
io

n
s
 (

1
0

-2
 m

o
l.
k
g

-1
)

Immersion time (day)

1
0

°C

1
0

0
°C

3
0

°C

5
0

°C

8
0

°C

100 101 102 103

0

5

10

 

 

 90°C

 80°C

 60°C

 40°C

S
c

is
s

io
n

s
 (

1
0

-2
 m

o
l.

k
g

-1
)

Immersion time (day)

3.0 3.5 4.0
10-8

10-6

10-4

Ea = 128 kJ.mol-1

R2 = 0.99

 

 

k
H

u
 (

L
2
.m

o
l-2

.d
a

y
-1

)

1/RT (10-4 mol.J-1)

90 80
T (°C)

60 40

 Exp.

 Arrhenius

Constants temp. dependence
is Arrhenian (valid !)

Scissions are predicted at 
any temp.



Macromolecular 
structure change

Lifetime prediction methodology

14/21

Water 
exposure

Mechanical 
properties change

End-of-life

Development of 
Hydrolytic Kinetic Model

Structure - mecha. property
Relationship determination

End-of-life criterion
determination

Lifetime 
Prediction



Mechanical properties change
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Characterized by uniaxial tensile test

Mechanical behaviour
is changed with 
immersion time
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Property of interest :

Elongation at break λb

Shows a plateau and a 
drop



Macromolecular 
structure change

Lifetime prediction methodology
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Water 
exposure

Mechanical 
properties change

End-of-life

Development of 
Hydrolytic Kinetic Model

Structure - mecha. property
Relationship determination

End-of-life criterion
determination

Lifetime 
Prediction
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Structure – mechanical property relationship
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Relationship between elongation at break and molar mass

Plateau + drop 

Behaviour similar to thermoplastic 
polymers 

Superposition of different ageing temp.

→ Master curve

Relationship independent of 
degradation kinetics was highlighted

0 30 60 90

1

4

7

10

 90 °C

 80 °C

 60 °C

 40 °C

 

 

l
 b

Mn (kg.mol
-1

)

AgeingSeawater 80°C

Note: molar mass Mn and scissions
are equivalent

Both properties can be used to
characterize material’s structure

𝑆𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =
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Macromolecular 
structure change

Lifetime prediction methodology
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Water 
exposure

Mechanical 
properties change

End-of-life

Development of 
Hydrolytic Kinetic Model

Structure - mecha. property
Relationship determination

End-of-life criterion
determination

Lifetime 
Prediction



Lifetime prediction
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Lifetime vs. ageing temperature

Lifetime prediction at any 
temperature 

Prediction from model 
differs from Arrhenius law
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Lifetime prediction at 10°C

Model : 19 years

Arrhenius : 30 years

Significant difference !



Benefits of the proposed model
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Macromolecular 
structure change

Water 
exposure

Mechanical 
properties change

End-of-life

Development of 
Hydrolytic Kinetic Model

Structure - mecha. property
Relationship determination

End-of-life criterion
determination

Lifetime 
Prediction

• Can predict non-Arrhenian behaviour

• Change of material formulation is easily taken into account

With Arrhenius law, a new ageing campaign would be necessary…

• Can predict mechanical properties change



Perspectives
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• Lifetime improvement with
hydrolytic stabilizer
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• Can the model be used on other TPEs ?

• Effect of coupling between oxidation and hydrolysis ?



Thank you for your attention
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Hydrolytic stabilizer to increase lifetime
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Hydrolytic stabilizer : a way to increase lifetime

Anti-catalysis agent, acts as an acid scavenger to inhibits catalysis

Slower degradation



Hydrolytic kinetic model
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Constant determination
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D = kHu

Step 1
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Step 2
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Step 3

𝐸𝑠𝑡𝑒𝑟 +𝑊𝑎𝑡𝑒𝑟
𝒌𝑯𝒖

𝐶𝑎𝑟𝑏𝑜𝑥. 𝐴𝑐𝑖𝑑 + 𝑠𝑐𝑖𝑠𝑠𝑖𝑜𝑛

𝐸𝑠𝑡𝑒𝑟 +𝑊𝑎𝑡𝑒𝑟
𝒌𝑯𝒄 (𝑨𝒄𝒊𝒅)

𝐶𝑎𝑟𝑏𝑜𝑥. 𝐴𝑐𝑖𝑑 + 𝑠𝑐𝑖𝑠𝑠𝑖𝑜𝑛

𝐶𝑎𝑟𝑏𝑜𝑥. 𝐴𝑐𝑖𝑑
𝑲𝒂

𝑝𝑟𝑜𝑡𝑜𝑛

𝐶𝑎𝑟𝑏𝑜𝑑𝑖𝑖𝑚𝑖𝑑𝑒 + 𝐶𝑎𝑟𝑏𝑜𝑥. 𝐴𝑐𝑖𝑑
𝒌𝒔

𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡

kHc



Structure – property relationship
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Relation between elongation at break an molar mass

Master curve independent of
• degradation kinetic
• Material nature
• Exposure nature (air/water)
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