

LIFETIME PREDICTION OF THERMOPLASTIC ELASTOMER IN MARINE ENVIRONMENT

A. BARDIN, P.Y. LE GAC, H. BINDI, B. FAYOLLE

EUROMECH-BREST-28/09/2019

Ifremer

THALES

General Context

Elastomers needed for marine applications (seal, protection)

Currently, thermoset elastomers are broadly used

- High chemical resistance
- Well known behaviour

1842: Vulcanization of NR by C. Goodyear

THALES

Tfremer

They meet specifications

But... processing is laborious

- Compounding (curing system, filler, plasticizer...)
- Mixing
- Processing (extrusion, injection, moulding...)
- Curing

And many chemicals are used

REACH regulation (June 2017) → Restrictions over EU chemicals industries

Some of the chemicals required for thermoset elastomer synthesis and processing are concerned

REACH regulation Registration, Evaluation, Authorisation and Restriction of Chemicals

IN

THALES

Alternative solution : thermoplastic elastomer (TPE)

TPEs = block copolymers

- Soft block: amorphous and rubbery
- Hard block: ½ crystalline

Long molecular chains physically tied with crystallites

3D network, similar to thermoset

TPEs benefits :

- Less chemicals \rightarrow REACH \checkmark
- Easily processed
- Reprocessable

But what about their behaviour in marine environment ? How to predict their lifetime ?

4/21

Materials

ZM

Ifremer

Marine environment : exposure to air and water

THALES 3 TPEs of different nature initially considered

	Soft block nature	Hard block nature	Resistance to water	Resistance to air
TPU-ester	Ester	Urethane	Bad	Good
TPU-ether	Ether	Urethane	Good	Bad
PEBA	Ether	Amide	Medium	Medium

TPU-ester highest resistance to air exposure

Water degradation will be the limiting phenomenon

Necessity to assess degradation kinetics induced by water to estimate lifetime

200

THALES

Ifremer

Lifetime prediction methodology: Arrhenius

How lifetime prediction is made today ?

Usually, **Arrhenius law** is used to estimate the effect of temperature on ageing kinetics of polymers.

Assumption : "Polymer lifetime obeys Arrhenius law"

$$t_F = \tau_0 \, \exp\left(\frac{-E_a}{RT}\right)$$

- t_F Lifetime
- τ_0 Pre-exponential constant
- E_a Activation energy (constant)
- R Ideal gas constant
- T Temperature

- ightarrow Accelerated ageing campaign
- \rightarrow Extrapolation at real conditions temperature

HALES

Ifremer

Lifetime prediction methodology: Arrhenius

Attractive because extremely simple of use... But careful of over simplification.

Rigorously, Arrhenius law applies to the <u>rate constant</u> of an <u>elementary</u> chemical reaction

 \rightarrow In most cases ageing process involves several mechanisms !

Example : CR rubber ageing in seawater

Comparison between Arrhenius extrapolation and naturally aged sample (23 years)

[Le Saux et al. 2013]

In most cases, Arrhenius law is actually not rigourously valid

 \rightarrow Necessity for a new lifetime prediction methodolgy

THALES

Ageing conditions

Samples thickness chosen so diffusion phenomenon is not rate-limiting

Annealing at 110°C for thermal stabilization

Immersion in natural seawater tanks at 40, 60, 80 and 90°C

<u>Protocol</u>

- Immersion
- took out at determined time
- drying
- testing

Tfremer

ZN

THALES

Structure change: molecular chains scissions

Macromolecular structural changes investigated through chains scissions (measured by GPC)

Water reacts with ester function (hydrolysis)

$\begin{array}{l} \textit{Ester} + \textit{Water} \ \rightarrow \ \textit{Carboxlyic} \ \textit{acid} + \textit{alcohol} \\ + \textit{scission} \end{array} \end{array}$

The reaction causes a polymer chain scission

Scissions prediction: Hydrolytic kinetic model

Model based on chemical reactions intervening in ester hydrolysis

 \rightarrow Extrapolation of chain scissions at low ageing temperature

13/21

Mechanical properties change

Ifremer

^{15/21}

Structure – mechanical property relationship

ZM

THALES

Relationship between elongation at break and molar mass

Plateau + drop

Behaviour similar to thermoplastic polymers

Superposition of different ageing temp. \rightarrow Master curve

Relationship independent of degradation kinetics was highlighted

<u>Note</u>: molar mass M_n and scissions are equivalent $Scissions = \frac{1}{M_n} - \frac{1}{M_{n0}}$ Both properties can be used to characterize material's structure

¶remer Lif€

Lifetime prediction

THALES

Lifetime vs. ageing temperature

Lifetime prediction at any temperature

Prediction from model differs from Arrhenius law

Lifetime prediction at 10°C

Model : 19 years Arrhenius : 30 years

Significant difference !

Benefits of the proposed model

in

THALES

- Can predict non-Arrhenian behaviour
- Change of material formulation is easily taken into account
 With Arrhenius law, a new ageing campaign would be necessary...
- Can predict mechanical properties change

Perspectives

1/M

THALES

 Lifetime improvement with hydrolytic stabilizer

- Can the model be used on other TPEs ?
- Effect of coupling between oxidation and hydrolysis ?

Thank you for your attention

Ifreme

THALES

Ifremer

Hydrolytic stabilizer to increase lifetime

Hydrolytic stabilizer : a way to increase lifetime

Anti-catalysis agent, acts as an acid scavenger to inhibits catalysis

$$R \xrightarrow{O}_{C} OR + H_{2}O \xrightarrow{H^{+}} R \xrightarrow{O}_{C} OH + ROH$$

An ester Water A carboxylic acid An alcohol

2M

THALES

Tiremer

Hydrolytic kinetic model

Constant determination

$$\begin{array}{l} \textit{Ester} + \textit{Water} \xrightarrow{k_{Hu}} \textit{Carbox}.\textit{Acid} + \textit{scission} \\ \textit{Ester} + \textit{Water} \xrightarrow{k_{Hc}(\textit{Acid})} \textit{Carbox}.\textit{Acid} + \textit{scission} \\ \textit{Carbox}.\textit{Acid} \xrightarrow{k_a} \textit{proton} \\ \textit{Carbodiimide} + \textit{Carbox}.\textit{Acid} \xrightarrow{k_s} \textit{Inactive Product} \end{array}$$

Structure – property relationship

Ifremer

THALES

Relation between elongation at break an molar mass

Master curve independent of

- degradation kinetic
- Material nature
- Exposure nature (air/water)